zoukankan      html  css  js  c++  java
  • 机器学习项目实战----泰坦尼克号获救预测(一)

    一、任务基础

    泰坦尼克号沉没是历史上最著名的沉船事故之一。1912年4月15日,在她的处女航中,泰坦尼克号在与冰山相撞后沉没,在2224名乘客和机组人员中造成1502人死亡。这场耸人听闻的悲剧震惊了国际社会,并为船舶制定了更好的安全规定。造成海难失事的原因之一是乘客和机组人员没有足够的救生艇。尽管幸存下沉有一些运气因素,但有些人比其他人更容易生存,例如妇女,儿童和上流社会。在这个案例中我们将运用机器学习来预测哪些乘客可以幸免于悲剧。

    数据集链接:https://pan.baidu.com/s/1bVnIM5JVZjib1znZIDn10g 。提取码:1htm 。

    读取titanic_train数据集

    import pandas
    
    # 读取数据集
    titanic = pandas.read_csv('titanic_train.csv')
    titanic.head(10)
    

    查看数据集前10行

    特征名词解释

    特征名称 特征解释
    PassengerId    乘客id,对结果没有影响
    Survived 1表示存活,0表示未存活
    Pclass 船舱等级,越有钱船舱等级越高,所以对结果有影响
    Name 乘客名字,先暂时认为对结果没有影响
    Sex 性别,毫无疑问,女生优先,所以肯定对结果有影响
    Age 年龄,不用说这列也有影响
    SibSp 兄弟姐妹,对结果也有影响
    Parch 父母和小孩,不用说也有影响
    Ticket 票的编号,貌似没啥影响
    Fare  船票价格,和船舱等级一样,不能忽略
    Cabin 船舱号,应该也没啥影响
    Embarked 登船地点,不同地点登船可能身份不一样

    二、数据预处理

    可以看到Age列有缺失值(NaN)。一般来说,数据发生缺失的话有两种处理方法,一种填充缺失值,一种直接舍弃这个特征。这里一般来说Age对结果是有较大影响的,我们可以对缺失值进行填充,这里可以填充平均值 。 

    # Age 缺失值填充
    titanic['Age'] = titanic['Age'].fillna(titanic['Age'].median())
    print(titanic.describe())
    

    填充后查看数据集的描述

      

    机器学习算法一般来说解决不了对字符的分类。因为我们是要对Survived这列‘’0‘’和"1"进行分类嘛。所以我们就要把"Sex"这一列的数据进行处理,把它映射为数值型。那我们就把"male"和“female”进行处理,分别用0和1替代。

    # print(titanic['Sex'].unique())
    
    # Replace all the occurences of male with the number 0.
    # 用数字0替换所有出现的男性。
    titanic.loc[titanic["Sex"] == "male", "Sex"] = 0
    titanic.loc[titanic["Sex"] == "female", "Sex"] = 1
    

    同时,我们也把"Embarked"这一列数据进行同样的处理

    # print(titanic['Embarked'].unique())
    
    # Embarked:上船港口,有三个取值,C/S/Q,是文字形式,不利于分析,
    # 故可能需要映射到数值的值,而且有2个缺失值
    titanic['Embarked'] = titanic['Embarked'].fillna('S') # 缺失值填充为这一列的众数'S'
    titanic.loc[titanic["Embarked"] == "S", "Embarked"] = 0
    titanic.loc[titanic["Embarked"] == "C", "Embarked"] = 1
    titanic.loc[titanic["Embarked"] == "Q", "Embarked"] = 2
    

    三、分类任务

    首先使用线性回归算法来进行分类

    # Import the linear regression(回归) class
    # 注意不要导错库 
    from sklearn.linear_model import LinearRegression
    from sklearn.model_selection import KFold
    
    # The columns we'll use to predict the target
    predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']
    
    # Initialize our algorithm class
    alg = LinearRegression()
    
    # Generate cross validation folds for the titanic dataset. It return the row indices
    # corresponding(相应的) to train and test.
    # 为Titanic数据集生成交叉验证折叠。它返回与训练和测试相对应的行索引。
    # We set random_state to ensure we get the same splits every time we run this.
    # kf = KFold(titanic.shape[0], n_folds=3, random_state=1) 写法错误已被弃用
    
    # 样本平均分成3份,3折交叉验证
    kf = KFold(n_splits=3,shuffle=False, random_state=1)
    
    # 注意这里不是kf.split(titanic.shape[0]),会报如下错误:
    # Singleton array array(891) cannot be considered a valid collection.
    
    predictions = []
    # 交叉验证 划分训练集 验证集 for train, test in kf.split(titanic): # The predictors we're using the train the algorithm. Note how we only take # the rows in the train folds # 注意我们只得到训练集的rows train_predictors = titanic[predictors].iloc[train, :] # The target we're using to train the algorithm. train_target = titanic['Survived'].iloc[train] # Training the algorithm using the predictors and target alg.fit(train_predictors, train_target) # We can now make predictions on the test fold test_predictions = alg.predict(titanic[predictors].iloc[test, :]) predictions.append(test_predictions)

    查看线性回归准确率

    import numpy as np
    
    # The predictions are in three separate numpy arrays. Concatenate them into one.
    # We concatenate them on asix 0, as they only have one axis.
    predictions = np.concatenate(predictions,axis=0)
    
    # Map predictions to outcomes (only possible outcomes are 1 and 0)
    predictions[predictions > .5] = 1  # 映射成分类结果 计算准确率
    predictions[predictions <= .5] = 0
    
    # 注意这一行与源代码有出入
    accuracy = sum(predictions==titanic['Survived'])/len(predictions)
    
    # 验证集的准确率 
    print(accuracy)
    

    得到的准确率为

    0.7833894500561167

    对于一个二分类问题来说,这个准确率似乎不太行,接下来用逻辑回归算法试下

    from sklearn.model_selection import cross_val_score
    from sklearn.linear_model import LogisticRegression
    
    alg = LogisticRegression(random_state=1)
    # Compute the accuracy score for all the cross validation folds,
    # (much simper than what we did before!)
    scores = cross_val_score(alg, titanic[predictors], titanic["Survived"], cv=3)
    # Take the mean of the scores (because we have one for each fold)
    print(scores.mean())
    

    得到的准确率为,可以发现效果要好了一点。

    0.8047138047138048

    上面得到的结果都是对交叉验证后的验证集来进行分类,在实际结果中,应该使用测试数据集来进行分类。

    读取测试数据集并填充数据集,然后进行数值映射,与上面类似。

    titanic_test = pandas.read_csv("test.csv")
    titanic_test["Age"] = titanic_test["Age"].fillna(titanic["Age"].median())
    titanic_test["Fare"] = titanic_test["Fare"].fillna(titanic_test["Fare"].median())
    titanic_test.loc[titanic_test["Sex"] == "male", "Sex"] = 0 
    titanic_test.loc[titanic_test["Sex"] == "female", "Sex"] = 1
    titanic_test["Embarked"] = titanic_test["Embarked"].fillna("S")
    
    titanic_test.loc[titanic_test["Embarked"] == "S", "Embarked"] = 0
    titanic_test.loc[titanic_test["Embarked"] == "C", "Embarked"] = 1
    titanic_test.loc[titanic_test["Embarked"] == "Q", "Embarked"] = 2
    

    通过上面发现,似乎线性回归,逻辑回归这类算法似乎不太行,那这次再用随机森林算法来试下(一般来说随机森林算法比线性回归和逻辑回归算法的效果好一点),注意随机森林参数的变化。

    from sklearn.model_selection import cross_val_score
    from sklearn.model_selection import KFold
    from sklearn.ensemble import RandomForestClassifier
    
    predictors = ["Pclass", "Sex", "Age", "SibSp", "Parch", "Fare", "Embarked"]
    
    # Initialize our algorithm with the default paramters
    # n_estimators is the number of trees we want to make
    # min_samples_split is the minimum number of rows we need to make a split
    # min_samples_leaf is the minimum number of samples we can have at the place where a
    # tree branch(分支) ends (the bottom points of the tree)
    alg = RandomForestClassifier(random_state=1,
                                 n_estimators=10,
                                 min_samples_split=2,
                                 min_samples_leaf=1)
    # Compute the accuracy score for all the cross validation folds.  (much simpler than what we did before!)
    kf = KFold(n_splits=3, shuffle=False, random_state=1)
    scores = cross_val_score(alg, titanic[predictors], titanic["Survived"], cv=kf)
    
    # Take the mean of the scores (because we have one for each fold)
    print(scores.mean())
    

    准确率为:

    0.7856341189674523

    发现准确率还是不太行。在机器学习中,调整参数也是非常重要的,一般通过参数的调整来对模型进行优化。这次调整随机森林的参数。

    alg = RandomForestClassifier(random_state=1,
                                 n_estimators=100,
                                 min_samples_split=4,
                                 min_samples_leaf=2)
    # Compute the accuracy score for all the cross validation folds.  (much simpler than what we did before!)
    kf = KFold(n_splits=3, shuffle=False, random_state=1)
    scores = cross_val_score(alg, titanic[predictors], titanic["Survived"], cv=kf)
    
    # Take the mean of the scores (because we have one for each fold)
    print(scores.mean())
    

    得到的准确率为:

    0.8148148148148148

    未完待续。。。

  • 相关阅读:
    【javascript】ajax 基础
    【javascript】菜单滚动至顶部后固定
    【jquery】返回顶部效果
    【css】浅谈 inlineblock
    【jquery】checkbox——类似邮箱全选功能
    【javascript】返回顶部效果
    wcf基础知识之 查看soap消息 TcpTrace
    wcf系列之服务契约ServiceContract 之操作重载
    wcf 基础知识 之 消息交换模式 response/reply oneway deplex
    wcf基础知识之端口共享 portSharing
  • 原文地址:https://www.cnblogs.com/xiaoyh/p/11321780.html
Copyright © 2011-2022 走看看