四、特征重要性衡量
通过上面可以发现准确率有小幅提升,但是似乎得到的结果还是不太理想。我们可以发现模型似乎优化的差不多了,使用的特征似乎也已经使用完了。准确率已经达到了瓶颈,但是如果我们还想提高精度的话,还是要回到最原始的数据集里面。对分类器的结果最大的影响还是输入的数据本身。接下来采用的方法一般是从原始的数据集里面构造出新的特征。新增特征,家庭成员数和名字长度。
# Generating a familysize column titanic["FamilySize"] = titanic["SibSp"] + titanic["Parch"] # The .apply method generates a new series titanic["NameLength"] = titanic["Name"].apply(lambda x: len(x))
提取名字(名字里面包含称呼,如小姐,女士,先生等等),这些称呼也是有可能对结果产生影响的。
import re
# A function to get the title from a name.
def get_title(name):
# Use a regular expression to search for a title.
# Titles always consist of capital and lowercase letters, and end with a period.
title_search = re.search(' ([A-Za-z]+).', name)
# If the title exists, extract and return it.
if title_search:
return title_search.group(1)
return ""
# Get all the titles and print how often each one occurs.
titles = titanic["Name"].apply(get_title)
print(pandas.value_counts(titles))
# Map each title to an integer. Some titles are very rare, and are compressed into the same codes as other titles.
title_mapping = {
"Mr": 1,
"Miss": 2,
"Mrs": 3,
"Master": 4,
"Dr": 5,
"Rev": 6,
"Major": 7,
"Col": 7,
"Mlle": 8,
"Mme": 8,
"Don": 9,
"Lady": 10,
"Countess": 10,
"Jonkheer": 10,
"Sir": 9,
"Capt": 7,
"Ms": 2
}
for k, v in title_mapping.items():
titles[titles == k] = v
# Verify that we converted everything.
# 验证我们是否转换了所有内容
print(pandas.value_counts(titles))
# Add in the title column.
titanic["Title"] = titles
得到的结果,发现前三个称呼占据数据集的一大半,毫无疑问,这个特征对结果也是有较大影响的。
Mr 517 Miss 182 Mrs 125 Master 40 Dr 7 Rev 6 Major 2 Mlle 2 Col 2 Sir 1 Mme 1 Lady 1 Countess 1 Capt 1 Ms 1 Don 1 Jonkheer 1 Name: Name, dtype: int64 1 517 2 183 3 125 4 40 5 7 6 6 7 5 10 3 8 3 9 2 Name: Name, dtype: int64
通过前面的步骤发现特征有点太多了,我们可以通过特征的重要性来筛选出哪些特征比较重要,而随机森林的好处就是特征重要性衡量。
特征重要性解释:在机器学习的训练过程中,对于多个特征来说,假如要对其中某一个特征来衡量它的重要性,我们就不用这个特征的数据来进行训练,而是把这个特征里面的数据全部替换为噪音数据,假如得到的准确率没有太大的变化,那就说明这个特征其实不那么重要,如果得到的准确率相差太大的话,说明这个特征很重要。其他特征的重要衡量以此类推。
import numpy as np
from sklearn.feature_selection import SelectKBest, f_classif # 选择最好特征
import matplotlib.pyplot as plt
predictors = [
"Pclass", "Sex", "Age", "SibSp", "Parch", "Fare", "Embarked", "FamilySize",
"Title", "NameLength"
]
# Perform feature selection
# 执行特征选择
selector = SelectKBest(f_classif, k=5)
selector.fit(titanic[predictors], titanic["Survived"])
# Get the raw p-values for each feature, and transform from p-values into scores
scores = -np.log10(selector.pvalues_)
# Plot the scores. See how "Pclass", "Sex", "Title", and "Fare" are the best?
plt.bar(range(len(predictors)), scores)
plt.xticks(range(len(predictors)), predictors, rotation='vertical')
plt.show()
# Pick only the four best features.
# 只选择4个最好的特征
predictors = ["Pclass", "Sex", "Fare", "Title"]
alg = RandomForestClassifier(random_state=1,
n_estimators=50,
min_samples_split=8,
min_samples_leaf=4)
得到的结果为:

上图就是特征重要性的一个柱状图,发现Age等一些特征好像影响不大,和刚开始的假设有较大出入,那么这些没用的特征就可以删除掉,只保留有用的特征即可。
五、集成算法
使用集成算法来提升准确率
from sklearn.ensemble import GradientBoostingClassifier
import numpy as np
# The algorithms we want to ensemble.
# We're using the more linear predictors for the logistic regression, and everything with the gradient boosting classifier.
algorithms = [
[GradientBoostingClassifier(random_state=1, n_estimators=25, max_depth=3), ["Pclass", "Sex", "Age", "Fare", "Embarked", "FamilySize", "Title",]],
[LogisticRegression(random_state=1,solver='liblinear'), ["Pclass", "Sex", "Fare", "FamilySize", "Title", "Age", "Embarked"]]
]
# Initialize the cross validation folds
kf = KFold(n_splits=3,shuffle=False, random_state=1)
predictions = []
for train, test in kf.split(titanic):
train_target = titanic["Survived"].iloc[train]
full_test_predictions = []
# Make predictions for each algorithm on each fold
for alg, predictors in algorithms:
# Fit the algorithm on the training data.
alg.fit(titanic[predictors].iloc[train,:], train_target)
# Select and predict on the test fold.
# The .astype(float) is necessary to convert the dataframe to all floats and avoid an sklearn error.
test_predictions = alg.predict_proba(titanic[predictors].iloc[test,:].astype(float))[:,1]
full_test_predictions.append(test_predictions)
# Use a simple ensembling scheme -- just average the predictions to get the final classification.
test_predictions = (full_test_predictions[0] + full_test_predictions[1]) / 2 # 两个分类器的平均结果
# Any value over .5 is assumed to be a 1 prediction, and below .5 is a 0 prediction.
test_predictions[test_predictions <= .5] = 0
test_predictions[test_predictions > .5] = 1
predictions.append(test_predictions)
# Put all the predictions together into one array.
# 将所有的预测放在一个数组中
predictions = np.concatenate(predictions, axis=0)
# Compute accuracy by comparing to the training data.
accuracy = sum(predictions == titanic["Survived"]) / len(predictions)
print(accuracy)
得到的准确率为:
0.8215488215488216
接下来用测试数据集来进行预测(注意:在测试数据集里面没有"Survived"这一列,所以我们得不到测试结果的准确率,只能进行预测)
titles = titanic_test["Name"].apply(get_title)
# We're adding the Dona title to the mapping, because it's in the test set, but not the training set
title_mapping = {
"Mr": 1,
"Miss": 2,
"Mrs": 3,
"Master": 4,
"Dr": 5,
"Rev": 6,
"Major": 7,
"Col": 7,
"Mlle": 8,
"Mme": 8,
"Don": 9,
"Lady": 10,
"Countess": 10,
"Jonkheer": 10,
"Sir": 9,
"Capt": 7,
"Ms": 2,
"Dona": 10
}
for k, v in title_mapping.items():
titles[titles == k] = v
titanic_test["Title"] = titles
# Check the counts of each unique title.
print(pandas.value_counts(titanic_test["Title"]))
# Now, we add the family size column.
titanic_test["FamilySize"] = titanic_test["SibSp"] + titanic_test["Parch"]
得到测试数据集里面Name里面称呼的次数:
1 240
2 79
3 72
4 21
7 2
6 2
10 1
5 1
Name: Title, dtype: int64
最终对测试数据集里面的乘客能否获救进行预测
predictors = [
"Pclass", "Sex", "Age", "Fare", "Embarked", "FamilySize", "Title"
]
algorithms = [
[
GradientBoostingClassifier(random_state=1,
n_estimators=25,
max_depth=3), predictors
],
[
LogisticRegression(random_state=1, solver='liblinear'),
["Pclass", "Sex", "Fare", "FamilySize", "Title", "Age", "Embarked"]
]
]
full_predictions = []
for alg, predictors in algorithms:
# Fit the algorithm using the full training data.
alg.fit(titanic[predictors], titanic["Survived"])
# Predict using the test dataset. We have to convert all the columns to floats to avoid an error.
predictions = alg.predict_proba(
titanic_test[predictors].astype(float))[:, 1]
predictions[predictions <= .5] = 0
predictions[predictions > .5] = 1
full_predictions.append(predictions)
# The gradient boosting classifier generates better predictions, so we weight it higher.
# predictions = (full_predictions[0] * 3 + full_predictions[1]) / 4
predictions
得到的结果(1表示能够获救,0表示不能被获救):
array([0., 0., 0., 0., 1., 0., 1., 0., 1., 0., 0., 0., 1., 0., 1., 1., 0.,
0., 1., 1., 0., 0., 1., 0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 1.,
0., 0., 1., 1., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 1., 0., 0.,
0., 1., 1., 0., 0., 0., 0., 0., 1., 0., 0., 0., 1., 1., 1., 1., 0.,
0., 1., 1., 0., 1., 0., 1., 1., 0., 1., 0., 1., 0., 0., 0., 0., 0.,
0., 1., 1., 1., 1., 1., 0., 1., 0., 0., 0., 1., 0., 1., 0., 1., 0.,
0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 1., 0.,
1., 1., 0., 1., 0., 0., 1., 0., 1., 0., 0., 0., 1., 0., 0., 0., 0.,
0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
0., 0., 0., 1., 1., 0., 1., 1., 0., 1., 0., 0., 1., 0., 0., 1., 1.,
0., 0., 0., 0., 0., 1., 1., 0., 1., 1., 0., 0., 1., 0., 1., 0., 1.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 1., 1., 0., 1., 1.,
0., 0., 1., 0., 1., 0., 0., 0., 0., 1., 0., 0., 1., 0., 1., 0., 1.,
0., 1., 0., 1., 1., 0., 1., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
1., 1., 1., 1., 0., 0., 0., 0., 1., 0., 1., 1., 1., 0., 1., 0., 0.,
0., 0., 0., 1., 0., 0., 0., 1., 1., 0., 0., 0., 0., 1., 0., 0., 0.,
1., 1., 0., 1., 0., 0., 0., 0., 1., 0., 1., 1., 1., 0., 0., 0., 0.,
0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1., 1.,
0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0.,
0., 1., 0., 1., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 1., 0., 1., 0., 1., 0., 1., 1., 0., 0., 0., 1., 0., 1.,
0., 0., 1., 0., 1., 1., 0., 1., 0., 0., 1., 1., 0., 0., 1., 0., 0.,
1., 1., 1., 0., 0., 0., 0., 0., 1., 1., 0., 1., 0., 0., 0., 0., 1.,
1., 0., 0., 0., 1., 0., 1., 0., 0., 1., 0., 1., 1., 0., 0., 0., 0.,
1., 1., 1., 1., 1., 0., 1., 0., 0., 0.])
六、总结
首先考虑数据集里面的所有特征,尽可能提取出来对结果有影响的一些信息。然后缺失值的处理,字符数据的映射,机器学习算法的改变,模型参数的优化,最后使用集成算法提升准确率。还包括对数据集的特征重要性的衡量和筛选。