zoukankan      html  css  js  c++  java
  • 三角形最长路径

    描述

    7
    3 8
    8 1 0
    2 7 4 4
    4 5 2 6 5
    (Figure 1)
    Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right.

     
    输入
    Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. The following N lines describe the data of the triangle. The number of rows in the triangle is > 1 but <= 100. The numbers in the triangle, all integers, are between 0 and 99.
    输出
    Your program is to write to standard output. The highest sum is written as an integer.
    样例输入
    5
    7
    3 8
    8 1 0 
    2 7 4 4
    4 5 2 6 5
    
    样例输出
    30

    解题思路:

          在解本题的时候,我习惯性的想到利用最长递增子序列等问题的求解方式,即要求i到j行的距离A[i,j],需要求到A[i,j-1]即i到j-1行的路径最长,但是通过这种思路,并不能够

    找到一个对应的等式。后来通过借鉴别人的思路,可以求出到达每个点的最长路径,再求出其最长路径,再由某点i,j,能够到达该点的上一行一定是F[i-1,j-1]或者F[i-1,j]。比较其大值加上该点的长度即可。

        设某点的路径数值为M[i,j]

        F[i,j]=Max(F[i-1,j-1],F[i-1,j])+M[i,j]

     1 public static int BiggestSum(int[,] M, int len) 
     2         {
     3             int[,] F = new int[len+1, len+1];
     4             int biggest = 0;
     5             for (int i = 0; i <= len; i++)
     6                 for (int j = 0; j <= len; j++)
     7                     F[i, j] = 0;
     8             for (int i = 1; i <= len; i++)
     9                 for (int j = 1; j <= i; j++)
    10                 {
    11                     F[i, j] = Math.Max(F[i - 1, j - 1], F[i - 1, j]) + M[i, j];
    12                     if (F[i, j] > biggest)
    13                         biggest = F[i, j];
    14                 }
    15             return biggest;
    16         }
    View Code
  • 相关阅读:
    eclipse新建JSP页面报错:Multiple annotations found at this line解决方法
    yum 安装报错:*epel: mirrors.aliyun.comError: xzcompressionnot available
    shell脚本中定义路径变量出现的BUG
    Rsync 12种故障排查及思路
    定时清除 /var/log/massage 下的信息脚本文件
    企业集群架构之全网备份
    局域网的某个机器无法上网,的排错思路
    日志审计
    在VUE中使用富文本编辑器ueditor
    ABP框架使用 Swagger
  • 原文地址:https://www.cnblogs.com/xiaoyi115/p/3176520.html
Copyright © 2011-2022 走看看