zoukankan      html  css  js  c++  java
  • LeetCode:Edit Distance(字符串编辑距离DP)

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

    You have the following 3 operations permitted on a word:

    a) Insert a character
    b) Delete a character
    c) Replace a character

     思路:题意求字符串的最小编辑距离。设状态为f[i][j],表示A[0][i] B[0][j]之间的最小编辑距离。

    forexamplr:str1c str2d

    1、c==d f[i][j]=f[i-1][j-1]
    2、c!=d
      (1)如果将c换成d 则f[i][j]=f[i-1][j-1]+1
    (2)如果在c后面添加一个d f[i][j]=f[i][j-1]+1
    (3)如果将c删除 f[i][j]=f[i-1][j-1]+1
       简单的状态方程为
    dp[i, j] = min { dp[i - 1, j] + 1,  dp[i, j - 1] + 1,  dp[i - 1, j - 1] + (s[i] == t[j] ? 0 : 1) }
     1 class Solution {
     2 public:
     3     int minDistance(string word1, string word2) {
     4         
     5         const int n=word1.size();
     6         const int m=word2.size();
     7         
     8         vector<vector<int>> f(n+1,vector<int>(m+1,0));
     9         
    10         for(int i=0;i<=n;i++)
    11             f[i][0]=i;
    12             
    13         for(int j=0;j<=m;j++)
    14             f[0][j]=j;
    15             
    16         for(int i=1;i<=n;i++)
    17             for(int j=1;j<=m;j++)
    18                 if(word1[i-1]==word2[j-1])
    19                     f[i][j]=f[i-1][j-1];
    20                 else{
    21                     f[i][j]=min(f[i-1][j-1],min(f[i-1][j],f[i][j-1]))+1;
    22                     
    23                 }
    24     
    25         return f[n][m];
    26     }
    27 };
  • 相关阅读:
    Oracle EXP
    Using Spring in Web and WinForms
    System.ComponentModel(未完...)
    工作必须得到强势方的支持!
    book.Save()还是bookManager.Save(book)?
    C#中常用的Attribute搜集(刚开始...)
    领域模型是否能够屏蔽数据库?
    合格代码的最基本的标准
    关于配置系统的设计
    对象分类
  • 原文地址:https://www.cnblogs.com/xiaoying1245970347/p/4721621.html
Copyright © 2011-2022 走看看