zoukankan      html  css  js  c++  java
  • memched 协议

    http://code.sixapart.com/svn/memcached/trunk/server/doc/protocol.txt

    一篇讲memcached的文章

    Protocol
    --------

    Clients of memcached communicate with server through TCP connections.
    (A UDP interface is also available; details are below under "UDP
    protocol.") A given running memcached server listens on some
    (configurable) port; clients connect to that port, send commands to
    the server, read responses, and eventually close the connection.

    There is no need to send any command to end the session. A client may
    just close the connection at any moment it no longer needs it. Note,
    however, that clients are encouraged to cache their connections rather
    than reopen them every time they need to store or retrieve data. This
    is because memcached is especially designed to work very efficiently
    with a very large number (many hundreds, more than a thousand if
    necessary) of open connections. Caching connections will eliminate the
    overhead associated with establishing a TCP connection (the overhead
    of preparing for a new connection on the server side is insignificant
    compared to this).

    There are two kinds of data sent in the memcache protocol: text lines
    and unstructured data. Text lines are used for commands from clients
    and responses from servers. Unstructured data is sent when a client
    wants to store or retrieve data. The server will transmit back
    unstructured data in exactly the same way it received it, as a byte
    stream. The server doesn't care about byte order issues in
    unstructured data and isn't aware of them. There are no limitations on
    characters that may appear in unstructured data; however, the reader
    of such data (either a client or a server) will always know, from a
    preceding text line, the exact length of the data block being
    transmitted.

    Text lines are always terminated by \r\n. Unstructured data is _also_
    terminated by \r\n, even though \r, \n or any other 8-bit characters
    may also appear inside the data. Therefore, when a client retrieves
    data from a server, it must use the length of the data block (which it
    will be provided with) to determine where the data block ends, and not
    the fact that \r\n follows the end of the data block, even though it
    does.

    Keys
    ----

    Data stored by memcached is identified with the help of a key. A key
    is a text string which should uniquely identify the data for clients
    that are interested in storing and retrieving it. Currently the
    length limit of a key is set at 250 characters (of course, normally
    clients wouldn't need to use such long keys); the key must not include
    control characters or whitespace.

    Commands
    --------

    There are three types of commands.

    Storage commands (there are six: "set", "add", "replace", "append"
    "prepend" and "cas") ask the server to store some data identified by a key. The
    client sends a command line, and then a data block; after that the
    client expects one line of response, which will indicate success or
    faulure.

    Retrieval commands (there are two: "get" and "gets") ask the server to
    retrieve data corresponding to a set of keys (one or more keys in one
    request). The client sends a command line, which includes all the
    requested keys; after that for each item the server finds it sends to
    the client one response line with information about the item, and one
    data block with the item's data; this continues until the server
    finished with the "END" response line.

    All other commands don't involve unstructured data. In all of them,
    the client sends one command line, and expects (depending on the
    command) either one line of response, or several lines of response
    ending with "END" on the last line.

    A command line always starts with the name of the command, followed by
    parameters (if any) delimited by whitespace. Command names are
    lower-case and are case-sensitive.

    Expiration times
    ----------------

    Some commands involve a client sending some kind of expiration time
    (relative to an item or to an operation requested by the client) to
    the server. In all such cases, the actual value sent may either be
    Unix time (number of seconds since January 1, 1970, as a 32-bit
    value), or a number of seconds starting from current time. In the
    latter case, this number of seconds may not exceed 60*60*24*30 (number
    of seconds in 30 days); if the number sent by a client is larger than
    that, the server will consider it to be real Unix time value rather
    than an offset from current time.


    Error strings
    -------------

    Each command sent by a client may be answered with an error string
    from the server. These error strings come in three types:

    - "ERROR\r\n"

    means the client sent a nonexistent command name.

    - "CLIENT_ERROR <error>\r\n"

    means some sort of client error in the input line, i.e. the input
    doesn't conform to the protocol in some way. <error> is a
    human-readable error string.

    - "SERVER_ERROR <error>\r\n"

    means some sort of server error prevents the server from carrying
    out the command. <error> is a human-readable error string. In cases
    of severe server errors, which make it impossible to continue
    serving the client (this shouldn't normally happen), the server will
    close the connection after sending the error line. This is the only
    case in which the server closes a connection to a client.


    In the descriptions of individual commands below, these error lines
    are not again specifically mentioned, but clients must allow for their
    possibility.


    Storage commands
    ----------------

    First, the client sends a command line which looks like this:

    <command name> <key> <flags> <exptime> <bytes> [noreply]\r\n
    cas <key> <flags> <exptime> <bytes> <cas unqiue> [noreply]\r\n

    - <command name> is "set", "add", "replace", "append" or "prepend"

    "set" means "store this data".

    "add" means "store this data, but only if the server *doesn't* already
    hold data for this key".

    "replace" means "store this data, but only if the server *does*
    already hold data for this key".

    "append" means "add this data to an existing key after existing data".

    "prepend" means "add this data to an existing key before existing data".

    The append and prepend commands do not accept flags or exptime.
    They update existing data portions, and ignore new flag and exptime
    settings.

    "cas" is a check and set operation which means "store this data but
    only if no one else has updated since I last fetched it."

    - <key> is the key under which the client asks to store the data

    - <flags> is an arbitrary 16-bit unsigned integer (written out in
    decimal) that the server stores along with the data and sends back
    when the item is retrieved. Clients may use this as a bit field to
    store data-specific information; this field is opaque to the server.
    Note that in memcached 1.2.1 and higher, flags may be 32-bits, instead
    of 16, but you might want to restrict yourself to 16 bits for
    compatibility with older versions.

    - <exptime> is expiration time. If it's 0, the item never expires
    (although it may be deleted from the cache to make place for other
    items). If it's non-zero (either Unix time or offset in seconds from
    current time), it is guaranteed that clients will not be able to
    retrieve this item after the expiration time arrives (measured by
    server time).

    - <bytes> is the number of bytes in the data block to follow, *not*
    including the delimiting \r\n. <bytes> may be zero (in which case
    it's followed by an empty data block).

    - <cas unique> is a unique 64-bit value of an existing entry.
    Clients should use the value returned from the "gets" command
    when issuing "cas" updates.

    - "noreply" optional parameter instructs the server to not send the
    reply. NOTE: if the request line is malformed, the server can't
    parse "noreply" option reliably. In this case it may send the error
    to the client, and not reading it on the client side will break
    things. Client should construct only valid requests.

    After this line, the client sends the data block:

    <data block>\r\n

    - <data block> is a chunk of arbitrary 8-bit data of length <bytes>
    from the previous line.

    After sending the command line and the data blockm the client awaits
    the reply, which may be:

    - "STORED\r\n", to indicate success.

    - "NOT_STORED\r\n" to indicate the data was not stored, but not
    because of an error. This normally means that either that the
    condition for an "add" or a "replace" command wasn't met, or that the
    item is in a delete queue (see the "delete" command below).

    - "EXISTS\r\n" to indicate that the item you are trying to store with
    a "cas" command has been modified since you last fetched it.

    - "NOT_FOUND\r\n" to indicate that the item you are trying to store
    with a "cas" command did not exist or has been deleted.


    Retrieval command:
    ------------------

    The retrieval commands "get" and "gets" operates like this:

    get <key>*\r\n
    gets <key>*\r\n

    - <key>* means one or more key strings separated by whitespace.

    After this command, the client expects zero or more items, each of
    which is received as a text line followed by a data block. After all
    the items have been transmitted, the server sends the string

    "END\r\n"

    to indicate the end of response.

    Each item sent by the server looks like this:

    VALUE <key> <flags> <bytes> [<cas unique>]\r\n
    <data block>\r\n

    - <key> is the key for the item being sent

    - <flags> is the flags value set by the storage command

    - <bytes> is the length of the data block to follow, *not* including
    its delimiting \r\n

    - <cas unique> is a unique 64-bit integer that uniquely identifies
    this specific item.

    - <data block> is the data for this item.

    If some of the keys appearing in a retrieval request are not sent back
    by the server in the item list this means that the server does not
    hold items with such keys (because they were never stored, or stored
    but deleted to make space for more items, or expired, or explicitly
    deleted by a client).


    Deletion
    --------

    The command "delete" allows for explicit deletion of items:

    delete <key> [<time>] [noreply]\r\n

    - <key> is the key of the item the client wishes the server to delete

    - <time> is the amount of time in seconds (or Unix time until which)
    the client wishes the server to refuse "add" and "replace" commands
    with this key. For this amount of item, the item is put into a
    delete queue, which means that it won't possible to retrieve it by
    the "get" command, but "add" and "replace" command with this key
    will also fail (the "set" command will succeed, however). After the
    time passes, the item is finally deleted from server memory.

    The parameter <time> is optional, and, if absent, defaults to 0
    (which means that the item will be deleted immediately and further
    storage commands with this key will succeed).

    - "noreply" optional parameter instructs the server to not send the
    reply. See the note in Storage commands regarding malformed
    requests.

    The response line to this command can be one of:

    - "DELETED\r\n" to indicate success

    - "NOT_FOUND\r\n" to indicate that the item with this key was not
    found.

    See the "flush_all" command below for immediate invalidation
    of all existing items.


    Increment/Decrement
    -------------------

    Commands "incr" and "decr" are used to change data for some item
    in-place, incrementing or decrementing it. The data for the item is
    treated as decimal representation of a 64-bit unsigned integer. If the
    current data value does not conform to such a representation, the
    commands behave as if the value were 0. Also, the item must already
    exist for incr/decr to work; these commands won't pretend that a
    non-existent key exists with value 0; instead, they will fail.

    The client sends the command line:

    incr <key> <value> [noreply]\r\n

    or

    decr <key> <value> [noreply]\r\n

    - <key> is the key of the item the client wishes to change

    - <value> is the amount by which the client wants to increase/decrease
    the item. It is a decimal representation of a 64-bit unsigned integer.

    - "noreply" optional parameter instructs the server to not send the
    reply. See the note in Storage commands regarding malformed
    requests.

    The response will be one of:

    - "NOT_FOUND\r\n" to indicate the item with this value was not found

    - <value>\r\n , where <value> is the new value of the item's data,
    after the increment/decrement operation was carried out.

    Note that underflow in the "decr" command is caught: if a client tries
    to decrease the value below 0, the new value will be 0. Overflow in
    the "incr" command will wrap around the 64 bit mark.

    Note also that decrementing a number such that it loses length isn't
    guaranteed to decrement its returned length. The number MAY be
    space-padded at the end, but this is purely an implementation
    optimization, so you also shouldn't rely on that.

    Statistics
    ----------

    The command "stats" is used to query the server about statistics it
    maintains and other internal data. It has two forms. Without
    arguments:

    stats\r\n

    it causes the server to output general-purpose statistics and
    settings, documented below. In the other form it has some arguments:

    stats <args>\r\n

    Depending on <args>, various internal data is sent by the server. The
    kinds of arguments and the data sent are not documented in this vesion
    of the protocol, and are subject to change for the convenience of
    memcache developers.


    General-purpose statistics
    --------------------------

    Upon receiving the "stats" command without arguments, the server sents
    a number of lines which look like this:

    STAT <name> <value>\r\n

    The server terminates this list with the line

    END\r\n

    In each line of statistics, <name> is the name of this statistic, and
    <value> is the data. The following is the list of all names sent in
    response to the "stats" command, together with the type of the value
    sent for this name, and the meaning of the value.

    In the type column below, "32u" means a 32-bit unsigned integer, "64u"
    means a 64-bit unsigner integer. '32u:32u' means two 32-but unsigned
    integers separated by a colon.


    Name Type Meaning
    ----------------------------------
    pid 32u Process id of this server process
    uptime 32u Number of seconds this server has been running
    time 32u current UNIX time according to the server
    version string Version string of this server
    pointer_size 32 Default size of pointers on the host OS
    (generally 32 or 64)
    rusage_user 32u:32u Accumulated user time for this process
    (seconds:microseconds)
    rusage_system 32u:32u Accumulated system time for this process
    (seconds:microseconds)
    curr_items 32u Current number of items stored by the server
    total_items 32u Total number of items stored by this server
    ever since it started
    bytes 64u Current number of bytes used by this server
    to store items
    curr_connections 32u Number of open connections
    total_connections 32u Total number of connections opened since
    the server started running
    connection_structures 32u Number of connection structures allocated
    by the server
    cmd_get 64u Cumulative number of retrieval requests
    cmd_set 64u Cumulative number of storage requests
    get_hits 64u Number of keys that have been requested and
    found present
    get_misses 64u Number of items that have been requested
    and not found
    evictions 64u Number of valid items removed from cache
    to free memory for new items
    bytes_read 64u Total number of bytes read by this server
    from network
    bytes_written 64u Total number of bytes sent by this server to
    network
    limit_maxbytes 32u Number of bytes this server is allowed to
    use for storage.
    threads 32u Number of worker threads requested.
    (see doc/threads.txt)


    Item statistics
    ---------------
    CAVEAT: This section describes statistics which are subject to change in the
    future.

    The "stats" command with the argument of "items" returns information about
    item storage per slab class. The data is returned in the format:

    STAT items:<slabclass>:<stat> <value>\r\n

    The server terminates this list with the line

    END\r\n

    The slabclass aligns with class ids used by the "stats slabs" command. Where
    "stats slabs" describes size and memory usage, "stats items" shows higher
    level information.

    The following item values are defined as of writing.

    Name Meaning
    ------------------------------
    number Number of items presently stored in this class. Expired
    items are not automatically excluded.
    age Age of the oldest item in the LRU.
    evicted Number of times an item had to be evicted from the LRU
    before it expired.
    outofmemory Number of times the underlying slab class was unable to
    store a new item. This means you are running with -M or
    an eviction failed.

    Note this will only display information about slabs which exist, so an empty
    cache will return an empty set.


    Item size statistics
    --------------------
    CAVEAT: This section describes statistics which are subject to change in the
    future.

    The "stats" command with the argument of "sizes" returns information about the
    general size and count of all items stored in the cache.
    WARNING: This command WILL lock up your cache! It iterates over *every item*
    and examines the size. While the operation is fast, if you have many items
    you could prevent memcached from serving requests for several seconds.

    The data is returned in the following format:

    <size> <count>\r\n

    The server terminates this list with the line

    END\r\n

    'size' is an approximate size of the item, within 32 bytes.
    'count' is the amount of items that exist within that 32-byte range.

    This is essentially a display of all of your items if there was a slab class
    for every 32 bytes. You can use this to determine if adjusting the slab growth
    factor would save memory overhead. For example: generating more classes in the
    lower range could allow items to fit more snugly into their slab classes, if
    most of your items are less than 200 bytes in size.


    Slab statistics
    ---------------
    CAVEAT: This section describes statistics which are subject to change in the
    future.

    The "stats" command with the argument of "slabs" returns information about
    each of the slabs created by memcached during runtime. This includes per-slab
    information along with some totals. The data is returned in the format:

    STAT <slabclass>:<stat> <value>\r\n
    STAT <stat> <value>\r\n

    The server terminates this list with the line

    END\r\n

    Name Meaning
    ------------------------------
    chunk_size The amount of space each chunk uses. One item will use
    one chunk of the appropriate size.
    chunks_per_page How many chunks exist within one page. A page by
    default is one megabyte in size. Slabs are allocated per
    page, then broken into chunks.
    total_pages Total number of pages allocated to the slab class.
    total_chunks Total number of chunks allocated to the slab class.
    used_chunks How many chunks have been allocated to items.
    free_chunks Chunks not yet allocated to items, or freed via delete.
    free_chunks_end Number of free chunks at the end of the last allocated
    page.
    active_slabs Total number of slab classes allocated.
    total_malloced Total amount of memory allocated to slab pages.


    Other commands
    --------------

    "flush_all" is a command with an optional numeric argument. It always
    succeeds, and the server sends "OK\r\n" in response (unless "noreply"
    is given as the last parameter). Its effect is to invalidate all
    existing items immediately (by default) or after the expiration
    specified. After invalidation none of the items will be returned in
    response to a retrieval command (unless it's stored again under the
    same key *after* flush_all has invalidated the items). flush_all
    doesn't actually free all the memory taken up by existing items; that
    will happen gradually as new items are stored. The most precise
    definition of what flush_all does is the following: it causes all
    items whose update time is earlier than the time at which flush_all
    was set to be executed to be ignored for retrieval purposes.

    The intent of flush_all with a delay, was that in a setting where you
    have a pool of memcached servers, and you need to flush all content,
    you have the option of not resetting all memcached servers at the
    same time (which could e.g. cause a spike in database load with all
    clients suddenly needing to recreate content that would otherwise
    have been found in the memcached daemon).

    The delay option allows you to have them reset in e.g. 10 second
    intervals (by passing 0 to the first, 10 to the second, 20 to the
    third, etc. etc.).


    "version" is a command with no arguments:

    version\r\n

    In response, the server sends

    "VERSION <version>\r\n", where <version> is the version string for the
    server.

    "verbosity" is a command with a numeric argument. It always succeeds,
    and the server sends "OK\r\n" in response (unless "noreply" is given
    as the last parameter). Its effect is to set the verbosity level of
    the logging output.

    "quit" is a command with no arguments:

    quit\r\n

    Upon receiving this command, the server closes the
    connection. However, the client may also simply close the connection
    when it no longer needs it, without issuing this command.


    UDP protocol
    ------------

    For very large installations where the number of clients is high enough
    that the number of TCP connections causes scaling difficulties, there is
    also a UDP-based interface. The UDP interface does not provide guaranteed
    delivery, so should only be used for operations that aren't required to
    succeed; typically it is used for "get" requests where a missing or
    incomplete response can simply be treated as a cache miss.

    Each UDP datagram contains a simple frame header, followed by data in the
    same format as the TCP protocol described above. In the current
    implementation, requests must be contained in a single UDP datagram, but
    responses may span several datagrams. (The only common requests that would
    span multiple datagrams are huge multi-key "get" requests and "set"
    requests, both of which are more suitable to TCP transport for reliability
    reasons anyway.)

    The frame header is 8 bytes long, as follows (all values are 16-bit integers
    in network byte order, high byte first):

    0-1 Request ID
    2-3 Sequence number
    4-5 Total number of datagrams in this message
    6-7 Reserved for future use; must be 0

    The request ID is supplied by the client. Typically it will be a
    monotonically increasing value starting from a random seed, but the client
    is free to use whatever request IDs it likes. The server's response will
    contain the same ID as the incoming request. The client uses the request ID
    to differentiate between responses to outstanding requests if there are
    several pending from the same server; any datagrams with an unknown request
    ID are probably delayed responses to an earlier request and should be
    discarded.

    The sequence number ranges from 0 to n-1, where n is the total number of
    datagrams in the message. The client should concatenate the payloads of the
    datagrams for a given response in sequence number order; the resulting byte
    stream will contain a complete response in the same format as the TCP
    protocol (including terminating \r\n sequences).

  • 相关阅读:
    “.NET研究”带你走进缓存世界 狼人:
    晚绑定场景下对象属性赋值和取值可以不需要Pro“.NET研究”pertyInfo 狼人:
    一“.NET研究”句代码实现批量数据绑定[下篇] 狼人:
    使用WC“.NET研究”F实现SOA面向服务编程——简单的WCF开发实例 狼人:
    在ASP.NET MVC3中使用“.NET研究”EFCodeFirst 1.0 狼人:
    一句代码实现批量“.NET研究”数据绑定[下篇] 狼人:
    在ASP.NET M“.NET研究”VC3 中利用JSONP跨域登录WEB系统 狼人:
    一句代码实现批量数“.NET研究”据绑定[上篇] 狼人:
    转发重定向Servlet之请求转发与重定向区别
    估计实例R语言: 极大似然估计实例
  • 原文地址:https://www.cnblogs.com/xiayong123/p/3717475.html
Copyright © 2011-2022 走看看