zoukankan      html  css  js  c++  java
  • 十、深度优先 && 广度优先

    原文地址

    一、什么是“搜索”算法?

    • 算法是作用于具体数据结构之上的,深度优先搜索算法和广度优先搜索算法都是基于“图”这种数据结构的。
    • 因为图这种数据结构的表达能力很强,大部分涉及搜索的场景都可以抽象成“图”。
    • 图上的搜索算法,最直接的理解就是,在图中找出从一个顶点出发,到另一个顶点的路径。
    • 具体方法有很多,两种最简单、最“暴力”的方法为深度优先、广度优先搜索,还有A、 IDA等启发式搜索算法。
    • 图有两种主要存储方法,邻接表和邻接矩阵。
    • 以无向图,采用邻接表存储为例:
    public class Graph {
        // 顶点的个数
        private int v;
        // 每个顶点后面有个链表
        private LinkedList<Integer>[] adj;
    
        public Graph(int v) {
            this.v = v;
            adj = new LinkedList[v];
            for (int i = 0; i < v; i++) {
                adj[i] = new LinkedList<>();
            }
        }
    
        /**
         * 添加边
         * @param s 顶点
         * @param t 顶点
         */
        public void addEdge(int s,int t){
            // 无向图一条边存两次(联想微信好友)
            adj[s].add(t);
            adj[t].add(s);
        }
    }
    

    二、广度优先搜索(BFS)

    • 广度优先搜索(Breadth-First-Search),简称为 BFS。
    • 它是一种“地毯式”层层推进的搜索策略,即先查找离起始顶点最近的,然后是次近的,依次往外搜索
    • BFS

    2.1、实现过程

    /**
     * 图的广度优先搜索,搜索一条从 s 到 t 的路径。
     * 这样求得的路径就是从 s 到 t 的最短路径。
     *
     * @param s 起始顶点
     * @param t 终止顶点
     */
    public void bfs(int s, int t) {
        if (s == t) {
            return;
        }
        // visited 记录已经被访问的顶点,避免顶点被重复访问。如果顶点 q 被访问,那相应的visited[q]会被设置为true。
        boolean[] visited = new boolean[v];
        visited[s] = true;
        // queue 是一个队列,用来存储已经被访问、但相连的顶点还没有被访问的顶点。因为广度优先搜索是逐层访问的,只有把第k层的顶点都访问完成之后,才能访问第k+1层的顶点。
        // 当访问到第k层的顶点的时候,需要把第k层的顶点记录下来,稍后才能通过第k层的顶点来找第k+1层的顶点。
        // 所以,用这个队列来实现记录的功能。
        Queue<Integer> queue = new LinkedList<>();
        queue.add(s);
        // prev 用来记录搜索路径。当从顶点s开始,广度优先搜索到顶点t后,prev数组中存储的就是搜索的路径。
        // 不过,这个路径是反向存储的。prev[w]存储的是,顶点w是从哪个前驱顶点遍历过来的。
        // 比如,通过顶点2的邻接表访问到顶点3,那prev[3]就等于2。为了正向打印出路径,需要递归地来打印,就是print()函数的实现方式。
        int[] prev = Arrays.stream(new int[v]).map(f -> -1).toArray();
    
        while (queue.size() != 0) {
            int w = queue.poll();
            LinkedList<Integer> wLinked = adj[w]; // 表示:邻接表存储时顶点为w,所对应的链表
            for (int i = 0; i < wLinked.size(); ++i) {
                int q = wLinked.get(i);
                // 判断顶点 q 是否被访问
                if (!visited[q]) {
                    // 未被访问
                    prev[q] = w;
                    if (q == t) {
                        print(prev, s, t);
                        return;
                    }
                    visited[q] = true;
                    queue.add(q);
                }
            }
        }
    }
    
    // 递归打印s->t的路径
    private void print(int[] prev, int s, int t) {
        if (prev[t] != -1 && t != s) {
            print(prev, s, prev[t]);
        }
        System.out.print(t + " ");
    }
    

    原理如下:

    2.2、复杂度分析

    • 最坏情况下,终止顶点 t 离起始顶点 s 很远,需要遍历完整个图才能找到。
    • 这个时候,每个顶点都要进出一遍队列,每个边也都会被访问一次,所以,广度优先搜索的时间复杂度是 O(V+E)
    • 其中,V 表示顶点的个数,E 表示边的个数。
    • 对于一个连通图来说,也就是说一个图中的所有顶点都是连通的,E肯定要大于等于 V-1,所以,广度优先搜索的时间复杂度也可以简写为 O(E)。
    • 广度优先搜索的空间消耗主要在几个辅助变量 visited 数组、queue 队列、prev 数组上。
    • 这三个存储空间的大小都不会超过顶点的个数,所以空间复杂度是 O(V)

    三、深度优先搜索(DFS)

    • 深度优先搜索(Depth-First-Search),简称DFS。
    • 最直观的例子就是“走迷宫,假设站在迷宫的某个岔路口,然后想找到出口。
    • 随意选择一个岔路口来走,走着走着发现走不通的时候,就回退到上一个岔路口,重新选择一条路继续走,直到最终找到出口。这种走法就是一种深度优先搜索策略。
    • 如下图所示,在图中应用深度优先搜索,来找某个顶点到另一个顶点的路径。
    • 搜索的起始顶点是 s,终止顶点是 t,在图中寻找一条从顶点 s 到顶点 t 的路径。
    • 用深度递归算法,把整个搜索的路径标记出来了。实线箭头表示遍历,虚线箭头表示回退。
    • 从图中可以看出,深度优先搜索找出来的路径,并不是顶点 s 到顶点 t 的最短路径。

    3.1、实现过程

    // 全局变量或者类成员变量,标记是否找到终点 t
    boolean found = false;
    
    /**
     * 深度优先搜索
     *
     * @param s 起始顶点
     * @param t 终止顶点
     */
    public void dfs(int s, int t) {
        found = false;
        // 标记顶点是否被访问
        boolean[] visited = new boolean[v];
        // prev 用来记录搜索路径,prev[w] = a 表示 w 顶点的上一级节点为 a
        int[] prev = Arrays.stream(new int[v])
                .map(f -> -1).toArray();
    
        recurDfs(s, t, visited, prev);
        print(prev, s, t);
    }
    
    private void recurDfs(int w, int t, boolean[] visited, int[] prev) {
        if (found == true) {
            return;
        }
        visited[w] = true;
        if (w == t) {
            found = true;
            return;
        }
        LinkedList<Integer> wLinked = adj[w];
        for (int i = 0; i < wLinked.size(); ++i) {
            int q = wLinked.get(i);
            if (!visited[q]) {
                prev[q] = w;
                recurDfs(q, t, visited, prev);
            }
        }
    }
    

    3.2、复杂度分析

    • 深度搜索中每条边最多会被访问两次,一次是遍历,一次是回退。
    • 所以,深度优先搜索算法的时间复杂度是 O(E), E 表示边的个数。
    • 深度优先搜索算法的消耗内存主要是 visited、 prev 数组和递归调用栈。
    • visited、 prev 数组的大小跟顶点的个数V成正比,递归调用栈的最大深度不会超过顶点的个数,所以总的空间复杂度就是 O(V)

    四,两者对比

    • 广度优先搜索和深度优先搜索是图上的两种最常用、最基本的搜索算法,比起其他高级的搜索算法,比如A、 IDA等,要简单粗暴,没有什么优化,所以,也被
      叫作暴力搜索算法。
    • 所以,这两种搜索算法仅适用于状态空间不大,也就是说图不大的搜索。
    • 广度优先搜索,通俗的理解就是,地毯式层层推进,从起始顶点开始,依次往外遍历。
    • 广度优先搜索需要借助队列来实现,遍历得到的路径就是,起始顶点到终止顶点的最短路径。
    • 深度优先搜索用的是回溯思想,非常适合用递归实现。换种说法,深度优先搜索是借助栈来实现的。
    • 在执行效率方面,深度优先和广度优先搜索的时间复杂度都是 O(E),空间复杂度是 O(V)。
  • 相关阅读:
    shellshock溢出攻击
    内核编译与系统调用
    模块与系统调用
    20199315《Linux内核原理与分析》第十二周作业
    20199315《Linux内核原理与分析》第十一周作业
    Linux下的静态链接库和动态链接库
    2019-2020-1 20199315《Linux内核原理与分析》第九周作业
    2019-2020-1 20199315 《Linux内核原理与分析》 第八周作业
    2019-2020-1 20199315《Linux内核原理与分析》第七周作业
    2019-2020-1 20199315《Linux内核原理与分析》第六周作业
  • 原文地址:https://www.cnblogs.com/xiexiandong/p/13157476.html
Copyright © 2011-2022 走看看