zoukankan      html  css  js  c++  java
  • Using geometry objects with geoprocessing tools

    Using geometry objects with geoprocessing tools

    In many geoprocessing workflows, you may need to run a specific operation using coordinate and geometry information but don't necessarily want to go through the process of creating a new (temporary) feature class, populating the feature class with cursors, using the feature class, then deleting the temporary feature class. Geometry objects can be used instead for both input and output to make geoprocessing easier. Geometry objects can be created from scratch using Geometry, Multipoint, PointGeometry, Polygon, or Polyline classes.

    Using geometry as input

    The following sample creates a polygon geometry object created using a list of x,y coordinates. The Clip tool is then used to clip a feature class with the polygon geometry object.

    import arcpy
    

     

    # List of coordinates.
    

    coordinates = [
    

        [2365000, 7355000],
    

        [2365000, 7455000],
    

        [2465000, 7455000],
    

        [2465000, 7355000]]
    

     

    # Create an array with a point object for each coordinate pair
    

    array = arcpy.Array([arcpy.Point(x, y) for x, y in coordinates])
    

     

    # Create a polygon geometry object using the array object
    

    boundary = arcpy.Polygon(array, arcpy.SpatialReference(2953))
    

     

    # Use the geometry to clip an input feature class
    

    arcpy.Clip_analysis('c:/data/rivers.shp', 
    

                        boundary, 
    

                        'c:/data/rivers_clipped.shp')
    

    Outputting geometry objects

    Output geometry objects can be created by setting the output of a geoprocessing tool to an empty geometry object. When a tool runs when set to an empty geometry object, the tool returns a list of geometry objects. In the following example, the Copy Features tool is used to return a list of geometry objects, which can then be looped through to accumulate the total length of all features.

    import arcpy
    

     

    # Run the CopyFeatures tool, setting the output to a geometry object.  
    

    #  geometries is returned as a list of geometry objects.
    

    #  
    

    geometries = arcpy.CopyFeatures_management('c:/temp/outlines.shp', arcpy.Geometry())
    

     

    # Walk through each geometry, totaling the length
    

    #
    

    length = sum([g.length for g in geometries])
    

    print('Total length: {}'.format(length))
    

  • 相关阅读:
    [NOTE]常用Linux命令总结[Thx for commandlinefu]
    [原]隧道Proxy原理详解(基于Node.js)
    [转]MySQL索引详解(1)
    [QA]服务端进程模型
    [转]MySQL索引详解(2)
    非动态规划实现LCS算法
    Java里线程安全的有界容器的实现
    maven历史版本下载
    JDK9下载
    maven排除依赖和添加本地依赖
  • 原文地址:https://www.cnblogs.com/xiexiaokui/p/13125715.html
Copyright © 2011-2022 走看看