zoukankan      html  css  js  c++  java
  • MapXtreme2004 & vs2005的官方回答

        自从ms公开vs belta测试版后,很多人员一直在试用。而正式版已发布,很多大型项目已经迁移到vs2005下来了,我象很多人一样,关心MapXtreme2004与vs2005的兼容性。我也做了一些试验,基本上,所有的大型的.net组件,都不能跨版本使用。这不仅仅是MapInfo产品的问题,而是所有的产品的问题。这种可移植性,还没有com组件强,这应该属于.net framework和VS IDER 问题。在java里应该不存在这样的问题吧。从这里可以看出来,.net在这几年里是不可能跨平台,连自身都不行,怎么可能cross os呢。当然这是后话。

        为了获得确切的消息,也是好久没去mapinfo了。在forum搜了一下"2005",哇塞,全世界开发人员的心情让我吃惊,甚至出现了一些偏激的词汇。看下面在forum上的一段话:

    Posted By: Vyom Jain    Posts: 36 / Registered: Jul, 2004
    We are still waiting for your reply as we want to move forward with Framework 2.0 (Visual Studio 2005). The various 3rd party tools we use have already provided us framework 2.0 compiled API. MapXtreme is really stopping us making the transition.

    Regards,

    Vyom
    Hear! Hear!

    I need this now, today. If you can't deliver I need to write or buy something else.

    At the moment I'm assuming that no news is bad news...

    还有人,天天在那里waiting.

    By my reckoning 'early' this week should be up by the end of today... any news

    下面是MapInfo的正式回答:

    Re: Visual Studio 2005 Posted: Nov 15, 2005 10:46 AM
    Reply
    Posted By: Cindy Makarowsky    Posts: 7,357 / Registered: Feb, 2002
    MapXtreme v6.5 is due to ship the end of January 2006.

    MapXtreme v6.5 will be viable with VS 2005/.NET2.0, however, it will not be fully supported as we will not have run our complete suite of tests by the time of ship.

    Users will be able to develop applications using VS 2003 and VS 2005 and deploy on .NET 1.1 or 2.0 respectively. However, if customers have issues using VS 2005/.NET 2.0 with MapXtreme V6.5 we will not be in a position to officially support and address those issues.

    We expect to have a partial list of known issues when using VS2005/.NET 2.0 to post by end of January.

    Our goal is to officially support VS 2005/.NET 2.0 by April of 2006.

    Cindy
    MapInfo Technical Support



  • 相关阅读:
    吴裕雄 python 机器学习——高斯贝叶斯分类器GaussianNB
    吴裕雄 python 机器学习——分类决策树模型
    吴裕雄 python 机器学习——回归决策树模型
    吴裕雄 python 机器学习——线性判断分析LinearDiscriminantAnalysis
    吴裕雄 python 机器学习——逻辑回归
    吴裕雄 python 机器学习——ElasticNet回归
    吴裕雄 python 机器学习——Lasso回归
    吴裕雄 python 机器学习——岭回归
    吴裕雄 python 机器学习——线性回归模型
    【2017 Multi-University Training Contest
  • 原文地址:https://www.cnblogs.com/xiexiaokui/p/294894.html
Copyright © 2011-2022 走看看