zoukankan      html  css  js  c++  java
  • 大数求模 sicily 1020

    I get ideas
     
     
    Unauthorizedxieyizun
    You havn't any signature yet.
    Logout
     

    1020. Big Integer

    Constraints

    Time Limit: 1 secs, Memory Limit: 32 MB

    Description

    Long long ago, there was a super computer that could deal with VeryLongIntegers(no VeryLongInteger will be negative). Do you know how this computer stores the VeryLongIntegers? This computer has a set of n positive integers: b1,b2,...,bn, which is called a basis for the computer.

    The basis satisfies two properties:
    1) 1 < bi <= 1000 (1 <= i <= n),
    2) gcd(bi,bj) = 1 (1 <= i,j <= n, i ≠ j).

    Let M = b1*b2*...*bn

    Given an integer x, which is nonegative and less than M, the ordered n-tuples (x mod b1, x mod b2, ..., x mod bn), which is called the representation of x, will be put into the computer.

    Input

    The input consists of T test cases. The number of test cases (T) is given in the first line of the input.
    Each test case contains three lines.
    The first line contains an integer n(<=100).
    The second line contains n integers: b1,b2,...,bn, which is the basis of the computer.
    The third line contains a single VeryLongInteger x.

    Each VeryLongInteger will be 400 or fewer characters in length, and will only contain digits (no VeryLongInteger will be negative).

    Output

    For each test case, print exactly one line -- the representation of x.
    The output format is:(r1,r2,...,rn)

    Sample Input

    2
    
    3
    2 3 5
    10
    
    4
    2 3 5 7
    13

    Sample Output

    (0,1,0)
    (1,1,3,6)

    Problem Source

    ZSUACM Team Member

    Submit
     

    // Problem#: 1020 // Submission#: 2930409 // The source code is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License // URI: http://creativecommons.org/licenses/by-nc-sa/3.0/ // All Copyright reserved by Informatic Lab of Sun Yat-sen University #include <iostream> #include <stdio.h> #include <stdlib.h> #include <stack> using namespace std; int remainder(int n, int p, stack<int>*); int main() { int t; int bs[100]; int factors[100]; int num_b; int b; string x; //字符串保存大数 cin >> t; while (t-- > 0) { cin >> num_b; for (int i = 0; i < num_b; i++) { cin >> b; bs[i] = b; } cin >> x; for (int i = 0; i < num_b; i++) { int result = 0; //解决超时主要在这步,也就是只用调用一次求余操作函数把全部10^n (n = x.lengt() -1, x.lengt() -2, ...., 1)的 % p全部算出来 //用一个栈来保存,而不用每次都重复计算10^n%p stack<int> st; int first_rd = remainder(x.length()-1, bs[i], &st); //去掉 n = x.length() -2 ,..., 1时重复迭代保存的10^n % p的值,因为这些值均在 10 ^ (x.length()-1) % p步的递归中获得了 while (st.size() > x.length() - 1) { st.pop(); } st.push(first_rd); for (int j = 0; j < x.length(); j++) { //此步用到了 求解大数求余的公式 //(ab mod c) = ((a mod c) * (b mod c)) mod c //(a+b) mod c = (a mod c + b mod c) mod c result += (int)(((x[j]-48) % bs[i]) * st.top()) % bs[i]; st.pop(); } factors[i] = result % bs[i]; } cout << "("; for (int i = 0; i < num_b; i++) { if (i != num_b-1) cout << factors[i] << ","; else cout << factors[i] << ")"; } cout << endl; } return 0; } //递归求余数10^n % p,即 10^n % p = (remainder(n-1,p,st)*(10%p))%p,用的求模公式为(ab mod c) = ((a mod c) * (b mod c))%p int remainder(int n, int p, stack<int> *st) { if (n == 0) return 1; else { //此步记得只递归一次 st->push(remainder(n-1, p, st)); return (st->top()* (10 % p)) % p; } }

      

  • 相关阅读:
    android通过httpClient请求获取JSON数据并且解析
    Http请求之HttpClient + AsyncTask异步请求
    HttpClient使用线程锁synchronized
    经典讨论(四)
    DRP学习进化模型
    ftk学习记录(button一片)
    MySQL检查连接的最大数量和改变的最大连接数
    Android_开发人员经常使用的颜色
    jQuery组织您钞四----jQuery操作DOM
    Codeforces 461B Appleman and Tree(木dp)
  • 原文地址:https://www.cnblogs.com/xieyizun-sysu-programmer/p/3990090.html
Copyright © 2011-2022 走看看