zoukankan      html  css  js  c++  java
  • 基于mykernel的时间片轮转调度

    学号: 363

    原创作品,转载请注明出处。
    本实验资源来源: https://github.com/mengning/linuxkernel/

    一、 实验环境配置

    本次实验在实验楼完成:

    在实验楼的终端下输入下面命令:

    cd LinuxKernel/linux-3.9.4
    rm -rf mykernel
    patch -p1 < ../mykernel_for_linux3.9.4sc.patch
    make allnoconfig
    make 
    qemu -kernel arch/x86/boot/bzImage

    可查看运行结果

     关闭qemu窗口,进入mykernel文件夹,可以查看mymain.c和myinterrupt.c文件。

    mymain.c的代码不断循环的去执行,周期性的产生时钟中断信号,去执行myinterrupt.c的代码。

    二、实现时间片轮转多道程序

    将mymain.c,myinterrupt.c,mypcb.h三个文件复制替换到mykernel文件夹下。

    运行如下:

    可以看到进程1切换到了进程2。

    三、时间片轮转多道程序的代码分析

    mypcb.h

    /*
     *  linux/mykernel/mypcb.h
     *
     *  Kernel internal PCB types
     *
     *  Copyright (C) 2013  Mengning
     *
     */
    
    #define MAX_TASK_NUM        4
    #define KERNEL_STACK_SIZE   1024*2 # unsigned long
    /* CPU-specific state of this task */
    struct Thread {
        unsigned long        ip;
        unsigned long        sp;
    };
    
    typedef struct PCB{
        int pid;
        volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
        unsigned long stack[KERNEL_STACK_SIZE];
        /* CPU-specific state of this task */
        struct Thread thread;
        unsigned long    task_entry;
        struct PCB *next;
    }tPCB;
    
    void my_schedule(void);

    可以看到最大进程数定义为四个,程序控制块PCB中定义了pid,状态statue,线程thread,进程入口函数task_entry等.

    mymain.c文件

    /*
     *  linux/mykernel/mymain.c
     *
     *  Kernel internal my_start_kernel
     *
     *  Copyright (C) 2013  Mengning
     *
     */
    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    
    
    #include "mypcb.h"
    
    tPCB task[MAX_TASK_NUM];
    tPCB * my_current_task = NULL;
    volatile int my_need_sched = 0;
    
    void my_process(void);
    
    
    void __init my_start_kernel(void)
    {
        int pid = 0;
        int i;
        /* Initialize process 0*/
        task[pid].pid = pid;
        task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
        task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
        task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
        task[pid].next = &task[pid];
        /*fork more process */
        for(i=1;i<MAX_TASK_NUM;i++)
        {
            memcpy(&task[i],&task[0],sizeof(tPCB));
            task[i].pid = i;
        //*(&task[i].stack[KERNEL_STACK_SIZE-1] - 1) = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
        task[i].thread.sp = (unsigned long)(&task[i].stack[KERNEL_STACK_SIZE-1]);
            task[i].next = task[i-1].next;
            task[i-1].next = &task[i];
        }
        /* start process 0 by task[0] */
        pid = 0;
        my_current_task = &task[pid];
        asm volatile(
            "movl %1,%%esp
    	"     /* set task[pid].thread.sp to esp */
            "pushl %1
    	"             /* push ebp */
            "pushl %0
    	"             /* push task[pid].thread.ip */
            "ret
    	"                 /* pop task[pid].thread.ip to eip */
            : 
            : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)    /* input c or d mean %ecx/%edx*/
        );
    } 
    
    int i = 0;
    
    void my_process(void)
    {    
        while(1)
        {
            i++;
            if(i%10000000 == 0)
            {
                printk(KERN_NOTICE "this is process %d -
    ",my_current_task->pid);
                if(my_need_sched == 1)
                {
                    my_need_sched = 0;
                    my_schedule();
                }
                printk(KERN_NOTICE "this is process %d +
    ",my_current_task->pid);
            }     
        }
    }

    在这个文件中void __init my_start_kernel(void)这个函数fork了4个新进程,把新fork的进程加入到进程链表在这个文件中。
    汇编过程如下:
    (1)将0号进程的esp的值赋给ESP寄存器
    (2)将0号进程的esp的值压栈(此时堆栈状态为进程0的堆栈)
    (3)将0号进程的eip的值压栈
    (4)通过ret指令,让栈顶的eip的值出栈到EIP寄存器中(间接改变EIP寄存器的值),完成进程0的启动

    myinterupt.c

    /*
     *  linux/mykernel/myinterrupt.c
     *
     *  Kernel internal my_timer_handler
     *
     *  Copyright (C) 2013  Mengning
     *
     */
    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    
    #include "mypcb.h"
    
    extern tPCB task[MAX_TASK_NUM];
    extern tPCB * my_current_task;
    extern volatile int my_need_sched;
    volatile int time_count = 0;
    
    /*
     * Called by timer interrupt.
     * it runs in the name of current running process,
     * so it use kernel stack of current running process
     */
    void my_timer_handler(void)
    {
    #if 1
        if(time_count%1000 == 0 && my_need_sched != 1)
        {
            printk(KERN_NOTICE ">>>my_timer_handler here<<<
    ");
            my_need_sched = 1;
        } 
        time_count ++ ;  
    #endif
        return;      
    }
    
    void my_schedule(void)
    {
        tPCB * next;
        tPCB * prev;
    
        if(my_current_task == NULL 
            || my_current_task->next == NULL)
        {
            return;
        }
        printk(KERN_NOTICE ">>>my_schedule<<<
    ");
        /* schedule */
        next = my_current_task->next;
        prev = my_current_task;
        if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
        {        
            my_current_task = next; 
            printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);  
            /* switch to next process */
            asm volatile(    
                "pushl %%ebp
    	"         /* save ebp */
                "movl %%esp,%0
    	"     /* save esp */
                "movl %2,%%esp
    	"     /* restore  esp */
                "movl $1f,%1
    	"       /* save eip */    
                "pushl %3
    	" 
                "ret
    	"                 /* restore  eip */
                "1:	"                  /* next process start here */
                "popl %%ebp
    	"
                : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
                : "m" (next->thread.sp),"m" (next->thread.ip)
            ); 
        }  
        return;    
    }

    通过my_time_handler()函数定时地不断向cpu发出中断,从而实现了时间片轮转。每调用1000次,就去将全局变量my_need_sched的值修改为1,通知正在执行的进程执行调度程序my_schedule。从而在my_schedule函数中完成进程的不断切换。

    四、总结


    (1)进程和中断在操作系统是是非常重要的两个部分,需要熟练掌握。
    (2)EIP寄存器储存着当前执行的代码,可以通过更改EIP寄存器的值来更改当前执行的代码,从而实现进程切换。出于安全考虑,EIP寄存器的值不能被直接改变,但可以通过压栈+ret指令来间接改变。
    (3)进程在执行过程中,当时间片用完之后需要进程切换时,需要保存当前的执行上下文环境,下次被调度的时候,需要回复进程的上下文环境。

  • 相关阅读:
    reduce端的连接实现
    Failed to stop mariadb.service: Interactive authentication required.
    Underlying cause: java.sql.SQLException : Access denied for user 'root'@'s150' (using password: YES)
    java.net.ConnectException: Call From s150/192.168.109.150 to s150:8020 failed on connection excepti
    启动hive出现 org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.ipc.StandbyExceptio
    hive learing_1
    在hive中执行sql语句:SemanticException org.apache.hadoop.hive.ql.metadata.HiveException:
    MariaDB [(none)]> drop user cr; ERROR 1396 (HY000): Operation DROP USER failed for 'cr'@'%'
    ThreadGroupAPI
    使用setUncaughtExceptionHandler在线程外面捕获异常
  • 原文地址:https://www.cnblogs.com/xiguas/p/10519273.html
Copyright © 2011-2022 走看看