Let us call a pair of integer numbers m-perfect, if at least one number in the pair is greater than or equal to m. Thus, the pairs (3, 3) and (0, 2) are 2-perfect while the pair (-1, 1) is not.
Two integers x, y are written on the blackboard. It is allowed to erase one of them and replace it with the sum of the numbers, (x + y).
What is the minimum number of such operations one has to perform in order to make the given pair of integers m-perfect?
Single line of the input contains three integers x, y and m ( - 1018 ≤ x, y, m ≤ 1018).
Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preffered to use the cin, cout streams or the %I64dspecifier.
Print the minimum number of operations or "-1" (without quotes), if it is impossible to transform the given pair to the m-perfect one.
1 2 5
2
-1 4 15
4
0 -1 5
-1
题意:
给你x 和 y 还有M,让你通过变换x和y,使得其中一个大于或者等于m,变换的方法就是自身加上另外一个,如果可以通过若干步使满足条件,输出最小的步数,否则输出-1。
思路:
如果xy小于0且m大于0,那么肯定不可能变换到m,如果 x < m && y < m && x+y<0也肯定没办法达到m。
我先排除了输出-1的,然后再考虑如何计算最小的步数。我们主要在每一步中最小一个加上另一个就可以了,这是朴素的求法,但可能出现这样的情况 比如 -100000000 1 10000000 这样的话会循环100000000多次,肯定超时,所以我们要加快速度。
代码:
//cf 317 A //2013-06-22-16.43 #include <iostream> using namespace std; int main() { __int64 x, y, m; while (cin >> x >> y >> m) { if (x <= 0 && y <= 0) { if (x < m && y < m && x+y <= 0) { cout << "-1" << endl; continue; } } __int64 ans = 0; int cnt = 0; while (x < m && y < m) { if (x > y) { __int64 t = x; x = y; y = t; } if (x < 0 && y > 0 && -x > y) { ans += (-x)/y; x += (-x)/y * y; } else { x = x+y; ans++; } } cout << ans << endl; } return 0; }