zoukankan      html  css  js  c++  java
  • light oj 12311232 1233 Coin Change 背包

    题目链接

    In a strange shop there are n types of coins of value A1, A2 ... AnC1, C2, ... Cn denote the number of coins of value A1, A2 ... An respectively. You have to find the number of ways you can make K using the coins.

    For example, suppose there are three coins 1, 2, 5 and we can use coin 1 at most 3 times, coin 2 at most 2 times and coin 5 at most 1 time. Then if K = 5 the possible ways are:

    1112

    122

    5  ………………………………

    暂时到半懂不懂也没办法讲明白,就不误人子弟了,直接贴代码了。

    #include <stdio.h>
    #include <string.h>
    const int mod = 100000007;
    int dp[1005];
    int coin[55];
    int cnt[55];
    
    int main()
    {
        int t, n, k;
        scanf("%d", &t);
        for (int tc = 1; tc <= t; tc++)
        {
            scanf("%d %d", &n, &k);
            for (int i = 1; i <= n; i++)
            {
                scanf("%d", &coin[i]);
            }
            for (int j = 1; j <= n; j++)
            {
                scanf("%d", &cnt[j]);
            }
            memset(dp, 0, sizeof(dp));
            dp[0] = 1;
            for (int i = 1; i <= n; i++)
            {
                for (int j = k; j >= 0; j--)
                {
                    for (int l = 1; l <= cnt[i]; l++)
                    {
                        if (j - l*coin[i] >= 0)
                        dp[j] += dp[j-coin[i]*l];
                    }
                }
                for (int j = 0; j <= k; j++)
                    dp[j] %= mod;
            }
            printf("Case %d: %d\n", tc, dp[k]);
        }
        return 0;
    }



    如果说把第一题看做01背包的话,这一题就是完全背包了 

    #include <stdio.h>
    #include <string.h>
    const int mod = 100000007;
    int dp[10050];
    int coin[105];
    
    int main()
    {
        int t, n, k;
        scanf("%d", &t);
        for (int tc = 1; tc <= t; tc++)
        {
            scanf("%d %d", &n, &k);
            for (int i = 1; i <= n; i++)
            {
                scanf("%d", &coin[i]);
            }
    
            memset(dp, 0, sizeof(dp));
            dp[0] = 1;
            for (int i = 1; i <= n; i++)
            {
                for (int j = coin[i]; j <= k; j++)
                {
                    dp[j] += dp[j-coin[i]];
                    dp[j] %= mod;
                }
            }
            printf("Case %d: %d\n", tc, dp[k]);
        }
        return 0;
    }


    第三题又是完全背包
    #include <stdio.h>
    #include <string.h>
    
    int dp[100005];
    int coin[101];
    int cnt[101];
    int used[1000101];
    
    int main()
    {
        int t, n, k;
        scanf("%d", &t);
        for (int ca = 1; ca <= t; ca++)
        {
            scanf("%d %d", &n, &k);
            for (int i = 1; i <= n; i++)
            {
                scanf("%d", &coin[i]);
            }
            for (int j = 1; j <= n; j++)
            {
                scanf("%d", &cnt[j]);
            }
            memset(dp, 0, sizeof(dp));
            dp[0] = 1;
            int ans = 0;
            for (int i = 1; i <= n; i++)
            {
                memset(used, 0, sizeof(used));
                for (int j = coin[i]; j <= k; j++)
                {
                    if (!dp[j] && dp[j-coin[i]] && used[j-coin[i]] < cnt[i])
                    {
                        ans++;
                        used[j]=used[j-coin[i]]+1;
                        dp[j] = 1;
                    }
                }
            }
            printf("Case %d: %d\n", ca, ans);
        }
        return 0;
    }


  • 相关阅读:
    JVM
    OLAP
    rocketMq学习
    redis的使用小记
    CRT配置端口转发
    冒泡排序
    spring AOP-切面编程
    linux下对jar包和war包进行重新打包
    oracle-sql性能优化
    遍历List,根据子项的某个属性分组
  • 原文地址:https://www.cnblogs.com/xindoo/p/3595111.html
Copyright © 2011-2022 走看看