zoukankan      html  css  js  c++  java
  • light oj 12311232 1233 Coin Change 背包

    题目链接

    In a strange shop there are n types of coins of value A1, A2 ... AnC1, C2, ... Cn denote the number of coins of value A1, A2 ... An respectively. You have to find the number of ways you can make K using the coins.

    For example, suppose there are three coins 1, 2, 5 and we can use coin 1 at most 3 times, coin 2 at most 2 times and coin 5 at most 1 time. Then if K = 5 the possible ways are:

    1112

    122

    5  ………………………………

    暂时到半懂不懂也没办法讲明白,就不误人子弟了,直接贴代码了。

    #include <stdio.h>
    #include <string.h>
    const int mod = 100000007;
    int dp[1005];
    int coin[55];
    int cnt[55];
    
    int main()
    {
        int t, n, k;
        scanf("%d", &t);
        for (int tc = 1; tc <= t; tc++)
        {
            scanf("%d %d", &n, &k);
            for (int i = 1; i <= n; i++)
            {
                scanf("%d", &coin[i]);
            }
            for (int j = 1; j <= n; j++)
            {
                scanf("%d", &cnt[j]);
            }
            memset(dp, 0, sizeof(dp));
            dp[0] = 1;
            for (int i = 1; i <= n; i++)
            {
                for (int j = k; j >= 0; j--)
                {
                    for (int l = 1; l <= cnt[i]; l++)
                    {
                        if (j - l*coin[i] >= 0)
                        dp[j] += dp[j-coin[i]*l];
                    }
                }
                for (int j = 0; j <= k; j++)
                    dp[j] %= mod;
            }
            printf("Case %d: %d\n", tc, dp[k]);
        }
        return 0;
    }



    如果说把第一题看做01背包的话,这一题就是完全背包了 

    #include <stdio.h>
    #include <string.h>
    const int mod = 100000007;
    int dp[10050];
    int coin[105];
    
    int main()
    {
        int t, n, k;
        scanf("%d", &t);
        for (int tc = 1; tc <= t; tc++)
        {
            scanf("%d %d", &n, &k);
            for (int i = 1; i <= n; i++)
            {
                scanf("%d", &coin[i]);
            }
    
            memset(dp, 0, sizeof(dp));
            dp[0] = 1;
            for (int i = 1; i <= n; i++)
            {
                for (int j = coin[i]; j <= k; j++)
                {
                    dp[j] += dp[j-coin[i]];
                    dp[j] %= mod;
                }
            }
            printf("Case %d: %d\n", tc, dp[k]);
        }
        return 0;
    }


    第三题又是完全背包
    #include <stdio.h>
    #include <string.h>
    
    int dp[100005];
    int coin[101];
    int cnt[101];
    int used[1000101];
    
    int main()
    {
        int t, n, k;
        scanf("%d", &t);
        for (int ca = 1; ca <= t; ca++)
        {
            scanf("%d %d", &n, &k);
            for (int i = 1; i <= n; i++)
            {
                scanf("%d", &coin[i]);
            }
            for (int j = 1; j <= n; j++)
            {
                scanf("%d", &cnt[j]);
            }
            memset(dp, 0, sizeof(dp));
            dp[0] = 1;
            int ans = 0;
            for (int i = 1; i <= n; i++)
            {
                memset(used, 0, sizeof(used));
                for (int j = coin[i]; j <= k; j++)
                {
                    if (!dp[j] && dp[j-coin[i]] && used[j-coin[i]] < cnt[i])
                    {
                        ans++;
                        used[j]=used[j-coin[i]]+1;
                        dp[j] = 1;
                    }
                }
            }
            printf("Case %d: %d\n", ca, ans);
        }
        return 0;
    }


  • 相关阅读:
    无向图判断三元环
    POJ 2785 4 Values whose Sum is 0
    lower_bound和upper_bound
    2153: 2018湖南多校第二场-20180407(网络同步赛)
    前缀和、前缀积
    hdu 4686 Arc of Dream
    UVA Recurrences 矩阵相乘+快速幂
    UVA 11149 Power of Matrix 构造矩阵
    poj 1258 Agri-Net prim模板 prim与dijkstra的区别
    poj 1182 食物链 (并查集)
  • 原文地址:https://www.cnblogs.com/xindoo/p/3595111.html
Copyright © 2011-2022 走看看