zoukankan      html  css  js  c++  java
  • light oj 12311232 1233 Coin Change 背包

    题目链接

    In a strange shop there are n types of coins of value A1, A2 ... AnC1, C2, ... Cn denote the number of coins of value A1, A2 ... An respectively. You have to find the number of ways you can make K using the coins.

    For example, suppose there are three coins 1, 2, 5 and we can use coin 1 at most 3 times, coin 2 at most 2 times and coin 5 at most 1 time. Then if K = 5 the possible ways are:

    1112

    122

    5  ………………………………

    暂时到半懂不懂也没办法讲明白,就不误人子弟了,直接贴代码了。

    #include <stdio.h>
    #include <string.h>
    const int mod = 100000007;
    int dp[1005];
    int coin[55];
    int cnt[55];
    
    int main()
    {
        int t, n, k;
        scanf("%d", &t);
        for (int tc = 1; tc <= t; tc++)
        {
            scanf("%d %d", &n, &k);
            for (int i = 1; i <= n; i++)
            {
                scanf("%d", &coin[i]);
            }
            for (int j = 1; j <= n; j++)
            {
                scanf("%d", &cnt[j]);
            }
            memset(dp, 0, sizeof(dp));
            dp[0] = 1;
            for (int i = 1; i <= n; i++)
            {
                for (int j = k; j >= 0; j--)
                {
                    for (int l = 1; l <= cnt[i]; l++)
                    {
                        if (j - l*coin[i] >= 0)
                        dp[j] += dp[j-coin[i]*l];
                    }
                }
                for (int j = 0; j <= k; j++)
                    dp[j] %= mod;
            }
            printf("Case %d: %d\n", tc, dp[k]);
        }
        return 0;
    }



    如果说把第一题看做01背包的话,这一题就是完全背包了 

    #include <stdio.h>
    #include <string.h>
    const int mod = 100000007;
    int dp[10050];
    int coin[105];
    
    int main()
    {
        int t, n, k;
        scanf("%d", &t);
        for (int tc = 1; tc <= t; tc++)
        {
            scanf("%d %d", &n, &k);
            for (int i = 1; i <= n; i++)
            {
                scanf("%d", &coin[i]);
            }
    
            memset(dp, 0, sizeof(dp));
            dp[0] = 1;
            for (int i = 1; i <= n; i++)
            {
                for (int j = coin[i]; j <= k; j++)
                {
                    dp[j] += dp[j-coin[i]];
                    dp[j] %= mod;
                }
            }
            printf("Case %d: %d\n", tc, dp[k]);
        }
        return 0;
    }


    第三题又是完全背包
    #include <stdio.h>
    #include <string.h>
    
    int dp[100005];
    int coin[101];
    int cnt[101];
    int used[1000101];
    
    int main()
    {
        int t, n, k;
        scanf("%d", &t);
        for (int ca = 1; ca <= t; ca++)
        {
            scanf("%d %d", &n, &k);
            for (int i = 1; i <= n; i++)
            {
                scanf("%d", &coin[i]);
            }
            for (int j = 1; j <= n; j++)
            {
                scanf("%d", &cnt[j]);
            }
            memset(dp, 0, sizeof(dp));
            dp[0] = 1;
            int ans = 0;
            for (int i = 1; i <= n; i++)
            {
                memset(used, 0, sizeof(used));
                for (int j = coin[i]; j <= k; j++)
                {
                    if (!dp[j] && dp[j-coin[i]] && used[j-coin[i]] < cnt[i])
                    {
                        ans++;
                        used[j]=used[j-coin[i]]+1;
                        dp[j] = 1;
                    }
                }
            }
            printf("Case %d: %d\n", ca, ans);
        }
        return 0;
    }


  • 相关阅读:
    Java设计模式之工厂模式的两种实现方式
    1.揭开消息中间件RabbitMQ的神秘面纱
    再谈spring的循环依赖是怎么造成的?
    深入理解java反射原理
    关于springmvc的helloworld的压测报告
    线程池工厂Executors编程的艺术
    lazy-init 懒加载的艺术
    spring中的mybatis的sqlSession是如何做到线程隔离的?
    java并发机制锁的类型和实现
    ReentrantReadWriteLock 读写锁解析
  • 原文地址:https://www.cnblogs.com/xindoo/p/3595111.html
Copyright © 2011-2022 走看看