zoukankan      html  css  js  c++  java
  • 二叉排序树的删除操作

    算法思想

    二叉排序树,删除操作主要针对三种情况。

    1 叶子节点-直接删除就可以了

    2 没有左孩子的节点-直接嫁接右子树就可以了(没有右孩子的节点-直接嫁接左子树就可以了)

    3 如果左右子树都存在,则寻找删除节点的直接前驱(即左子树里面的最右的节点)

    编程时需要注意,函数时针对指针的操作,因此为了修改指针,要使用二级指针传参才可以

    例如:

    void delete(BinaryTree **b){
    
      ....
    
    }
    
    int main(){
    
      BinaryTree *b = (BinaryTree *)malloc(sizeof(BinaryTree));
    
      delete(&b);
    
    }

    函数代码:

    bool deleteTree(BTree **b,int key){
        if(!*b)
            return false;
        else{
            if((*b)->data == key){
                return deleteNode(&(*b));
            }
            else if((*b)->data > key)
                return deleteTree(&(*b)->lchild,key);
            else
                return deleteTree(&(*b)->rchild,key);
        }
    }
    bool deleteNode(BTree **b){
        BTree *p,*s;
        if((*b)->lchild == NULL ){
            p = (*b);
            (*b) = (*b)->rchild;
            free(p);
        }else if((*b)->rchild == NULL){
            p = (*b);
            (*b) = (*b)->lchild;
            free(p);
        }else{
            p = (*b);
            s = (*b)->lchild;
            while(s->rchild != NULL){
                p = s;
                s = s->rchild;
            }
            (*b)->data = s->data;
            if(p != (*b))
                p->rchild = s->lchild;
            else
                p->lchild = s->lchild;
            free(s);
            return true;
        }
    }

    全部代码:

      1 #include <stdio.h>
      2 #include <stdlib.h>
      3 typedef struct bTree{
      4     int data;
      5     struct bTree *lchild,*rchild;
      6 }BTree;
      7 
      8 void initialTree(BTree *b);
      9 bool insertTree(BTree *b,int key);
     10 int searchTree(BTree *b,int key,BTree *f,BTree *&p);
     11 void InOrderTree(BTree *b);
     12 bool deleteTree(BTree **b,int key);
     13 bool deleteNode(BTree **b);
     14 
     15 int main(){
     16     BTree *b = (BTree *)malloc(sizeof(BTree));
     17     b->data = 5;
     18     b->lchild = b->rchild = NULL;
     19     initialTree(b);
     20     InOrderTree(b);
     21     deleteTree(&b,4);
     22     InOrderTree(b);
     23     getchar();
     24     return 0;
     25 }
     26 bool deleteTree(BTree **b,int key){
     27     if(!*b)
     28         return false;
     29     else{
     30         if((*b)->data == key){
     31             return deleteNode(&(*b));
     32         }
     33         else if((*b)->data > key)
     34             return deleteTree(&(*b)->lchild,key);
     35         else
     36             return deleteTree(&(*b)->rchild,key);
     37     }
     38 }
     39 bool deleteNode(BTree **b){
     40     BTree *p,*s;
     41     if((*b)->lchild == NULL ){
     42         p = (*b);
     43         (*b) = (*b)->rchild;
     44         free(p);
     45     }else if((*b)->rchild == NULL){
     46         p = (*b);
     47         (*b) = (*b)->lchild;
     48         free(p);
     49     }else{
     50         p = (*b);
     51         s = (*b)->lchild;
     52         while(s->rchild != NULL){
     53             p = s;
     54             s = s->rchild;
     55         }
     56         (*b)->data = s->data;
     57         if(p != (*b))
     58             p->rchild = s->lchild;
     59         else
     60             p->lchild = s->lchild;
     61         free(s);
     62         return true;
     63     }
     64 }
     65 void InOrderTree(BTree *b){
     66     if( !b )
     67         return;
     68     InOrderTree(b->lchild);
     69     printf("%d ",b->data);
     70     InOrderTree(b->rchild);
     71 }
     72 
     73 void initialTree(BTree *b){
     74     insertTree(b,5);
     75     insertTree(b,3);
     76     insertTree(b,4);
     77     insertTree(b,6);
     78     insertTree(b,2);
     79     insertTree(b,1);
     80     insertTree(b,8);
     81 }
     82 int searchTree(BTree *b,int key,BTree *f,BTree *&p){
     83     if(!b){
     84         p = f;
     85         printf("++%d
    ",p->data);
     86         return 0;
     87     }
     88     else if( key == b->data){
     89         p = b;
     90         printf("--%d 
    ",p->data);
     91         printf("找到元素key:%d
    ",key);
     92         return 1;
     93     }
     94     else if(key > b->data)
     95         return searchTree(b->rchild,key,b,p);
     96     else
     97         return searchTree(b->lchild,key,b,p);
     98 }
     99 bool insertTree(BTree *b,int key){
    100     BTree *p,*s;
    101     if(!searchTree(b,key,NULL,p)){
    102         printf("%d 没有出现在树中,可以插入在%d之后
    ",key,p->data);
    103         s = (BTree *)malloc(sizeof(BTree));
    104         s->data = key;
    105         s->lchild = s->rchild = NULL;
    106         if(!b){
    107             b = s;
    108         }
    109         else if(key < p->data){
    110             p->lchild = s;
    111         }else{ 
    112             p->rchild = s;
    113         }
    114         return true;
    115     }else
    116         return false;
    117 }
    View Code

    运行示例:

  • 相关阅读:
    Oracle RAC的五大优势及其劣势
    Lucene全文检索基础
    oracle手工生成AWR报告方法记录
    log file sync 等侍值高的一般通用解决办法
    log file sync 因为数据线有问题而造成高等侍的表现
    MongoDB实用教程
    1小时学会JQuery
    Ajax+Struts2实现验证码验证功能
    硬件01:门
    关于软件工程的思考15:人和绩效
  • 原文地址:https://www.cnblogs.com/xing901022/p/3654333.html
Copyright © 2011-2022 走看看