zoukankan      html  css  js  c++  java
  • 朴素贝叶斯文本分类

    https://blog.csdn.net/hao5335156/article/details/82716923

    1、贝叶斯理论
    当我们有样本(包含特征和类别)的时候,我们非常容易通过p(x)p(y|x)=p(y)p(x|y)p(x)p(y|x)=p(y)p(x|y)统计得到 p(特征|类别) .即p(特征)p(类别|特征)=p(类别)p(特征|类别)p(特征)p(类别|特征)=p(类别)p(特征|类别),有

    p(类别|特征)=p(类别)p(特征|类别)p(特征)(1)
    (1)p(类别|特征)=p(类别)p(特征|类别)p(特征)

    独立假设
    特征往往是多维的, p(features|class)=p(f0,f1,…,fn|c)p(features|class)=p(f0,f1,…,fn|c),这里假设为2维,有
    p(f0,f1|c)=p(f1|c,f0)p(f0|c)(2)
    (2)p(f0,f1|c)=p(f1|c,f0)p(f0|c)

    假设特征之间是独立的(朴素贝叶斯的思想)
    p(f0,f1|c)=p(f1|c)p(f0|c)(3)
    (3)p(f0,f1|c)=p(f1|c)p(f0|c)


    p(f0,f1,…,fn|c)=Πnip(fi|c)(4)
    (4)p(f0,f1,…,fn|c)=Πinp(fi|c)

    贝叶斯分类器
    对每个类别计算一个概率 p(ci)p(ci),然后再计算所有特征的条件概率 p(fj|ci)p(fj|ci) ,那么分类的时候我们就是依据贝叶斯找一个最可能的类别:
    p(classi|f0,f1,…,fn)=p(classi)p(f0,f1,…,fn)Πnjp(fj|ci)(5)
    (5)p(classi|f0,f1,…,fn)=p(classi)p(f0,f1,…,fn)Πjnp(fj|ci)
    2、文本分类步骤
    数据集说明:一条记录为“一段短文本新闻”,lable为“体育,军事,IT等”新闻类别。
    (1)分词:把一条记录进行分词,保存为word_list,所有的记录保存在data_list,所有的类别保存在class_list
    (2)划分训练集和测试集
    (3)统计词频:统计所有训练集的每个词出现的次数,即词频,放入all_words_dict字典中,对词频进行降序排序,保存为all_words_list
    (4)停用词表:载入停用词表stopwords_set
    (5)文本特征提取:选取n=1000个特征词(词频高到低依次选)保存在feature_words(选取all_words_list中(all_words_list中词频进行降序排序)排除出现在停用词表中的词,排除数字,并且要求词的长度为(1,5))
    (6)每条记录的表示(表示成长度为1000的特征词):依次遍历feature_words中每个词,对于每次遍历的词word,如果在当前需要表示的记录中,则该记录的这一位为1,否则为0。即features = [1 if word in text_words else 0 for word in feature_words],这里的text_words 表示一条记录。
    (7)训练,预测:使用MultinomialNB进行训练,预测
    (8)deleteN:删掉前面的deleteN个feature_words词,即最高频的deleteN词不作为特征词,而是从其排序后面的feature_words列表中选1000个特征词,重复以上步骤,得到另一个预测结果。deleteN的取值在某个范围时候,分类效果最好。(如下图,400多时候分类效果最好)


    3、代码
    #coding: utf-8
    import os
    import time
    import random
    import jieba
    import nltk
    import sklearn
    from sklearn.naive_bayes import MultinomialNB
    import numpy as np
    import pylab as pl
    import matplotlib.pyplot as plt
    #粗暴的词去重
    def make_word_set(words_file):
    words_set = set()
    with open(words_file, 'r',encoding='UTF-8') as fp:
    for line in fp.readlines():
    word = line.strip() #word = line.strip().decode("utf-8")
    if len(word)>0 and word not in words_set: # 去重
    words_set.add(word)
    return words_set


    # 文本处理,也就是样本生成过程
    def text_processing(folder_path, test_size=0.2):
    folder_list = os.listdir(folder_path)
    data_list = []
    class_list = []

    # 遍历文件夹
    for folder in folder_list:
    new_folder_path = os.path.join(folder_path, folder)
    files = os.listdir(new_folder_path)
    # 读取文件
    j = 1
    for file in files:
    if j > 100: # 怕内存爆掉,只取100个样本文件
    break
    with open(os.path.join(new_folder_path, file), 'r', encoding='UTF-8') as fp:
    raw = fp.read()
    ## jieba中文分词
    #jieba.enable_parallel(4) # 开启并行分词模式,参数为并行进程数,不支持windows
    word_cut = jieba.cut(raw, cut_all=False) # 精确模式
    word_list = list(word_cut) # genertor转化为list,每个词unicode格式
    #jieba.disable_parallel() # 关闭并行分词模式

    data_list.append(word_list) # 训练集list
    class_list.append(folder.encode('utf-8')) # 类别 class_list.append(folder.decode('utf-8'))
    j += 1

    ## 划分训练集和测试集
    data_class_list = list(zip(data_list, class_list)) #data_class_list = zip(data_list, class_list)
    random.shuffle(data_class_list)
    index = int(len(data_class_list) * test_size) + 1
    train_list = data_class_list[index:]
    test_list = data_class_list[:index]
    train_data_list, train_class_list = zip(*train_list)
    test_data_list, test_class_list = zip(*test_list)

    # 统计词频放入all_words_dict
    all_words_dict = {}
    for word_list in train_data_list:
    for word in word_list:
    if all_words_dict.get(word)!=None: #if all_words_dict.has_key(word):
    all_words_dict[word] += 1
    else:
    all_words_dict[word] = 1

    # 词频进行降序排序
    all_words_tuple_list = sorted(all_words_dict.items(), key=lambda f: f[1], reverse=True) # 内建函数sorted参数需为list
    all_words_list = list(list(zip(*all_words_tuple_list))[0]) #all_words_list = list(zip(*all_words_tuple_list)[0])

    return all_words_list, train_data_list, test_data_list, train_class_list, test_class_list


    def words_dict(all_words_list, deleteN, stopwords_set=set()):
    # 选取特征词
    feature_words = []
    n = 1
    for t in range(deleteN, len(all_words_list), 1):
    if n > 1000: # feature_words的维度1000
    break

    if not all_words_list[t].isdigit() and all_words_list[t] not in stopwords_set and 1 < len(
    all_words_list[t]) < 5:
    feature_words.append(all_words_list[t])
    n += 1
    return feature_words

    # 文本特征
    def text_features(train_data_list, test_data_list, feature_words, flag='nltk'):
    def text_features(text, feature_words):
    text_words = set(text)
    ## -----------------------------------------------------------------------------------
    if flag == 'nltk':
    ## nltk特征 dict
    features = {word:1 if word in text_words else 0 for word in feature_words}
    elif flag == 'sklearn':
    ## sklearn特征 list
    features = [1 if word in text_words else 0 for word in feature_words]
    else:
    features = []
    ## -----------------------------------------------------------------------------------
    return features
    train_feature_list = [text_features(text, feature_words) for text in train_data_list]
    test_feature_list = [text_features(text, feature_words) for text in test_data_list]
    return train_feature_list, test_feature_list

    # 分类,同时输出准确率等
    def text_classifier(train_feature_list, test_feature_list, train_class_list, test_class_list, flag='nltk'):
    ## -----------------------------------------------------------------------------------
    if flag == 'nltk':
    ## 使用nltk分类器
    train_flist = zip(train_feature_list, train_class_list)
    test_flist = zip(test_feature_list, test_class_list)
    classifier = nltk.classify.NaiveBayesClassifier.train(train_flist)
    test_accuracy = nltk.classify.accuracy(classifier, test_flist)
    elif flag == 'sklearn':
    ## sklearn分类器
    classifier = MultinomialNB().fit(train_feature_list, train_class_list)
    test_accuracy = classifier.score(test_feature_list, test_class_list)
    else:
    test_accuracy = []
    return test_accuracy


    print("start")

    ## 文本预处理
    folder_path = './Database/SogouC/Sample'
    all_words_list, train_data_list, test_data_list, train_class_list, test_class_list = text_processing(folder_path, test_size=0.2)

    # 生成stopwords_set
    stopwords_file = './stopwords_cn.txt'
    stopwords_set = make_word_set(stopwords_file)

    ## 文本特征提取和分类
    # flag = 'nltk'
    flag = 'sklearn'
    deleteNs = range(0, 1000, 20)
    test_accuracy_list = []
    for deleteN in deleteNs:
    # feature_words = words_dict(all_words_list, deleteN)
    feature_words = words_dict(all_words_list, deleteN, stopwords_set)
    train_feature_list, test_feature_list = text_features(train_data_list, test_data_list, feature_words, flag)
    test_accuracy = text_classifier(train_feature_list, test_feature_list, train_class_list, test_class_list, flag)
    test_accuracy_list.append(test_accuracy)
    print(test_accuracy_list)

    # 结果评价
    #plt.figure()
    plt.plot(deleteNs, test_accuracy_list)
    plt.title('Relationship of deleteNs and test_accuracy')
    plt.xlabel('deleteNs')
    plt.ylabel('test_accuracy')
    #plt.show()
    plt.savefig('result.png')

    print("finished")

    ————————————————
    版权声明:本文为CSDN博主「HawardScut」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
    原文链接:https://blog.csdn.net/hao5335156/article/details/82716923

  • 相关阅读:
    RESTful API 介绍,设计
    golang web框架设计7:整合框架
    golang web框架设计6:上下文设计
    golang web框架设计5:配置设计
    golang web框架设计4:日志设计
    golang web框架设计3:controller设计
    golang web框架设计2:自定义路由
    golang web框架设计1:框架规划
    深入理解golang: channels
    服务端高并发分布式十四次架构演进之路
  • 原文地址:https://www.cnblogs.com/xinghaiyige/p/15573220.html
Copyright © 2011-2022 走看看