zoukankan      html  css  js  c++  java
  • Gym

    H. Special Palindrome

     

    A sequence of positive and non-zero integers called palindromic if it can be read the same forward and backward, for example:

    15 2 6 4 6 2 15

    20 3 1 1 3 20

    We have a special kind of palindromic sequences, let's call it a special palindrome.

    A palindromic sequence is a special palindrome if its values don't decrease up to the middle value, and of course they don't increase from the middle to the end.

    The sequences above is NOT special, while the following sequences are:

    1 2 3 3 7 8 7 3 3 2 1

    2 10 2

    1 4 13 13 4 1

    Let's define the function F(N), which represents the number of special sequences that the sum of their values is N.

    For example F(7) = 5 which are : (7), (1 5 1), (2 3 2), (1 1 3 1 1), (1 1 1 1 1 1 1)

    Your job is to write a program that compute the Value F(N) for given N's.

    Input

    The Input consists of a sequence of lines, each line contains a positive none zero integer N less than or equal to 250. The last line contains 0 which indicates the end of the input.

    Output

    Print one line for each given number N, which it the value F(N).

    Examples
    input
    1
    3
    7
    10
    0
    output
    1
    2
    5
    17

    动态规划题目,求数字n可以组成多少个回文串,dp[i][j]表示值为i,以j开头的。
     1 #include <iostream>
     2 #include <stdio.h>
     3 #include <string.h>
     4 #include <algorithm>
     5 #define ll long long
     6 using namespace std;
     7 ll dp[500][500];
     8 ll ans[500];
     9 void init(){
    10     dp[0][1] = dp[1][1] = dp[2][1] = 1;
    11     dp[2][2] = dp[3][1] = dp[3][3] = 1;
    12     ans[1] = 1; ans[2] = ans[3] = 2;
    13     for(int i = 4; i <= 250; i ++){
    14         ll tmp = 0;
    15         for(int j = 1; j <= i/2; j ++){
    16             if(j==1)dp[i][j] = ans[i-2];
    17             else{
    18                 ll u = i-j*2;
    19                 if(u==0)dp[i][j] = 1;
    20                 else{
    21                     ll ret = 0;
    22                     for(int k = j; k <= u; k ++){
    23                         ret += dp[u][k];
    24                     }
    25                     dp[i][j] = ret;
    26                 }
    27             }
    28             tmp += dp[i][j];
    29         }
    30         dp[i][i] = 1;
    31         tmp += 1;
    32         ans[i] = tmp;
    33     }
    34 }
    35 int main(){
    36     int n;
    37     init();
    38     while(scanf("%d",&n)&&n){
    39         cout << ans[n] << endl;
    40     }
    41     return 0;
    42 }
  • 相关阅读:
    07.对称加密算法指令
    06.Openssl基本概念
    04.openssl背景
    03.openssl密码实现技术
    02.密钥学基本概念
    01.openssl-概述
    17行为型模式之命令模式
    16行为型模式之模板模式
    15结构型模式之享元模式
    14结构型模式之外观模式
  • 原文地址:https://www.cnblogs.com/xingkongyihao/p/7197324.html
Copyright © 2011-2022 走看看