zoukankan      html  css  js  c++  java
  • POJ 2387 Til the Cows Come Home

    Description

    Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

    Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

    Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

    Input

    * Line 1: Two integers: T and N

    * Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

    Output

    * Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

    Sample Input

    5 5
    1 2 20
    2 3 30
    3 4 20
    4 5 20
    1 5 100

    Sample Output

    90

    Hint

    INPUT DETAILS:

    There are five landmarks.

    OUTPUT DETAILS:

    Bessie can get home by following trails 4, 3, 2, and 1.
     
    最短路问题。
    dijkstra算法:
     1 #include <iostream>
     2 #include <stdio.h>
     3 #include <algorithm>
     4 #define INF 0x3f3f3f3f
     5 using namespace std;
     6 const int N = 1010;
     7 int G[N][N], vis[N], d[N];
     8 int t, n;
     9 void dijkstra() {
    10     for(int i = 1; i <= n; i ++) d[i] = INF, vis[i] = 0;
    11     d[1] = 0;
    12     while(true) {
    13         int v = -1;
    14         for(int i = 1; i <= n; i ++) {
    15             if(!vis[i] && (v == -1 || d[v] > d[i])) v = i;
    16         }
    17         if(v == -1) break;
    18         vis[v] = 1;
    19         for(int i = 1; i <= n; i ++)
    20         d[i] = min(d[i],d[v]+G[i][v]);
    21     }
    22 }
    23 int main() {
    24     while(scanf("%d%d",&t,&n) != EOF) {
    25         for(int i = 1; i <= n; i ++) {
    26             for(int j = 1; j <= n; j ++)
    27             G[i][j] = (i==j ? 0: INF);
    28         }
    29         for(int i = 1; i <= t; i ++) {
    30             int u, v, w;
    31             scanf("%d %d %d", &u, &v, &w);
    32             if(G[u][v] > w) {
    33                 G[u][v] = G[v][u] = w;
    34             }
    35         }
    36         dijkstra();
    37         printf("%d
    ",d[n]);
    38     }
    39     return 0;
    40 }

    优化的dijksta算法:

     1 #include <iostream>
     2 #include <queue>
     3 #include <string.h>
     4 #include <stdio.h>
     5 #include <vector>
     6 #include <queue>
     7 #define INF 0x3f3f3f3f
     8 using namespace std;
     9 const int N = 2010;
    10 struct edge {
    11     int to, cost;
    12 };
    13 vector<edge> G[N];
    14 int d[N], t, n;
    15 typedef pair<int,int> P;
    16 void dijkstra() {
    17     priority_queue<P, vector<P>, greater<P> > que;
    18     for(int i = 1; i <= n; i ++) d[i] = INF;
    19     d[1] = 0;
    20     que.push(P(0,1));
    21     while(!que.empty()) {
    22         P p = que.top(); que.pop();
    23         int v = p.second;
    24         if(d[v] < p.first) continue;
    25         for(int i = 0; i < G[v].size(); i ++) {
    26             edge e = G[v][i];
    27             if(d[e.to] > d[v] + e.cost) {
    28                 d[e.to] = d[v] + e.cost;
    29                 que.push(P(d[e.to], e.to));
    30             }
    31         }
    32     }
    33 }
    34 int main() {
    35     while(scanf("%d%d",&t,&n)!=EOF) {
    36         for(int i = 1; i <= t; i ++) {
    37             int u, v, w;
    38             scanf("%d %d %d",&u, &v, &w);
    39             G[u].push_back((edge){v,w});
    40             G[v].push_back((edge){u,w});
    41         }
    42         dijkstra();
    43         printf("%d
    ",d[n]);
    44     }
    45     return 0;
    46 }
  • 相关阅读:
    【目标检测】RCNN算法详解
    自己搭建传统ocr识别项目学习
    015. asp.net实现简易聊天室
    014. asp.net实现记住密码的功能
    013. asp.net统计网站访问人数
    012. asp.net生成验证码图片(汉字示例/字母+数字)
    011. asp.net内置对象
    010. 使用.net框架提供的属性
    001. 使用ssh连接不上centos 6.5的解决方法及其解决中文乱码
    009. C#中的WebBrowser控件的属性、方法及操作演示代码(转)
  • 原文地址:https://www.cnblogs.com/xingkongyihao/p/7276826.html
Copyright © 2011-2022 走看看