zoukankan      html  css  js  c++  java
  • Educational Codeforces Round 26 D. Round Subset 动态规划

    D. Round Subset

    Let's call the roundness of the number the number of zeros to which it ends.

    You have an array of n numbers. You need to choose a subset of exactly k numbers so that the roundness of the product of the selected numbers will be maximum possible.

    Input

    The first line contains two integer numbers n and k (1 ≤ n ≤ 200, 1 ≤ k ≤ n).

    The second line contains n space-separated integer numbers a1, a2, ..., an (1 ≤ ai ≤ 1018).

    Output

    Print maximal roundness of product of the chosen subset of length k.

    Examples
    Input
    3 2
    50 4 20
    Output
    3
    Input
    5 3
    15 16 3 25 9
    Output
    3
    Input
    3 3
    9 77 13
    Output
    0
    Note

    In the first example there are 3 subsets of 2 numbers. [50, 4] has product 200 with roundness 2, [4, 20] — product 80, roundness 1, [50, 20] — product 1000, roundness 3.

    In the second example subset [15, 16, 25] has product 6000, roundness 3.

    In the third example all subsets has product with roundness 0.

    给你n个数,从中取k个数,求使得k个数相乘最多有多少个后缀0。

    一个神奇的动态规划。dp[i][j]表示取i个数,在有j个5的情况下最多有多少个2

     1 #include <iostream>
     2 #include <stdio.h>
     3 #include <string.h>
     4 #include <algorithm>
     5 #include <cmath>
     6 #define ll long long
     7 using namespace std;
     8 struct Nod {
     9     ll a;
    10     int x,y;
    11     Nod(){
    12         a = x = y = 0;
    13     }
    14 }nod[220];
    15 void fun(Nod *p) {
    16     ll x = p->a;
    17     while(x%2 == 0){
    18         p->x++;
    19         x/=2;
    20     }
    21     x = p->a;
    22     while(x%5 == 0){
    23         p->y++;
    24         x/=5;
    25     }
    26 }
    27 int dp[210][18*210];
    28 bool vis[220];
    29 int main() {
    30     int n, k,MAXY=0;
    31     cin >> n >> k;
    32     for(int i = 1; i <= n; i ++)
    33         cin >> nod[i].a, fun(&nod[i]),MAXY += nod[i].y;
    34     memset(dp, -1, sizeof(dp));
    35     // for(int i = 1; i <= n; i ++)printf("%d %d
    ",nod[i].x,nod[i].y);
    36     // printf("%d
    ",MAXY);
    37     dp[0][0] = 0;
    38     for(int i = 1; i <= n; i ++) {
    39         for(int j = k; j >= 1; j --) {
    40             for(int k = MAXY; k >= 0; k --) {
    41                 if(k-nod[i].y < 0) continue;
    42                 if(dp[j-1][k-nod[i].y] == -1) continue;
    43                 dp[j][k] = max(dp[j][k], dp[j-1][k-nod[i].y]+nod[i].x);
    44             }
    45         }
    46     }
    47     int ans = 0;
    48     for(int i = 1; i <= MAXY; i ++) {
    49         ans = max(ans, min(i,dp[k][i]));
    50     }
    51     printf("%d
    ",ans);
    52     return 0;
    53 }
  • 相关阅读:
    【题解】JSOI2009游戏
    【考试记录】4.8 Path (网络流 —— 劲题)
    【考试记录】4.8 Table ( 数论数学 --组合数 & 杨辉三角)
    【题解】HNOI2016树
    【算法】最小乘积生成树 & 最小乘积匹配 (HNOI2014画框)
    【加油!】
    [bzoj4916] 神犇和蒟蒻 [杜教筛]
    [CQOI2015][bzoj3930] 选数 [杜教筛+莫比乌斯反演]
    [luogu3768] 简单的数学题 [杜教筛]
    春季学习记录
  • 原文地址:https://www.cnblogs.com/xingkongyihao/p/7287091.html
Copyright © 2011-2022 走看看