zoukankan      html  css  js  c++  java
  • HDU 5983 Pocket Cube

    Pocket Cube

    Problem Description
    The Pocket Cube, also known as the Mini Cube or the Ice Cube, is the 2 × 2 × 2 equivalence of a Rubik’s Cube.
    The cube consists of 8 pieces, all corners.
    Each piece is labeled by a three dimensional coordinate (h, k, l) where h, k, l ∈ {0, 1}. Each of the six faces owns four small faces filled with a positive integer.
    For each step, you can choose a certain face and turn the face ninety degrees clockwise or counterclockwise.
    You should judge that if one can restore the pocket cube in one step. We say a pocket cube has been restored if each face owns four same integers.
     
    Input
    The first line of input contains one integer N(N ≤ 30) which is the number of test cases.
    For each test case, the first line describes the top face of the pocket cube, which is the common 2 × 2 face of pieces
    labelled by (0, 0, 1),(0, 1, 1),(1, 0, 1),(1, 1, 1). Four integers are given corresponding to the above pieces.
    The second line describes the front face, the common face of (1, 0, 1),(1, 1, 1),(1, 0, 0),(1, 1, 0). Four integers are
    given corresponding to the above pieces.
    The third line describes the bottom face, the common face of (1, 0, 0),(1, 1, 0),(0, 0, 0),(0, 1, 0). Four integers are
    given corresponding to the above pieces.
    The fourth line describes the back face, the common face of (0, 0, 0),(0, 1, 0),(0, 0, 1),(0, 1, 1). Four integers are
    given corresponding to the above pieces.
    The fifth line describes the left face, the common face of (0, 0, 0),(0, 0, 1),(1, 0, 0),(1, 0, 1). Four integers are given
    corresponding to the above pieces.
    The six line describes the right face, the common face of (0, 1, 1),(0, 1, 0),(1, 1, 1),(1, 1, 0). Four integers are given
    corresponding to the above pieces.
    In other words, each test case contains 24 integers a, b, c to x. You can flat the surface to get the surface development
    as follows.

    + - + - + - + - + - + - +
    | q | r | a | b | u | v |
    + - + - + - + - + - + - +
    | s | t | c | d | w | x |
    + - + - + - + - + - + - +
    | e | f |
    + - + - +
    | g | h |
    + - + - +
    | i | j |
    + - + - +
    | k | l |
    + - + - +
    | m | n |
    + - + - +
    | o | p |
    + - + - +
     
    Output
    For each test case, output YES if can be restored in one step, otherwise output NO.
     
    Sample Input
    4
    1 1 1 1
    2 2 2 2
    3 3 3 3
    4 4 4 4
    5 5 5 5
    6 6 6 6
    6 6 6 6
    1 1 1 1
    2 2 2 2
    3 3 3 3
    5 5 5 5
    4 4 4 4
    1 4 1 4
    2 1 2 1
    3 2 3 2
    4 3 4 3
    5 5 5 5
    6 6 6 6
    1 3 1 3
    2 4 2 4
    3 1 3 1
    4 2 4 2
    5 5 5 5
    6 6 6 6
     
    Sample Output
    YES
    YES
    YES
    NO
     
    在给定的一个二阶魔方,是否在一次之内就还原,这题只能模拟,真变态。弄的我写了好多if。
     
     1 #include <iostream>
     2 #include <stdio.h>
     3 #include <string.h>
     4 using namespace std;
     5 int a[7][5];
     6 bool check() {
     7     for(int i = 0; i < 6; i ++) {
     8         int ans = 0;
     9         for(int j = 1; j < 4; j ++) {
    10             if(a[i][j] == a[i][j-1]) ans++;
    11         }
    12         if(ans != 3) return false;
    13     }
    14     return true;
    15 }
    16 bool check1() {
    17     if(!(a[0][0]==a[0][2]&&a[0][2]==a[3][1]&&a[3][1]==a[3][3]))return false;
    18     if(!(a[1][0]==a[1][2]&&a[1][2]==a[0][1]&&a[0][1]==a[0][3]))return false;
    19     if(!(a[2][0]==a[2][2]&&a[2][2]==a[1][1]&&a[1][1]==a[1][3]))return false;
    20     if(!(a[3][0]==a[3][2]&&a[3][2]==a[2][1]&&a[2][1]==a[2][3]))return false;
    21     if(!(a[4][0]==a[4][1]&&a[4][1]==a[4][2]&&a[4][2]==a[4][3]))return false;
    22     if(!(a[5][0]==a[5][1]&&a[5][1]==a[5][2]&&a[5][2]==a[5][3]))return false;
    23     return true;
    24 }
    25 bool check2() {
    26     if(!(a[0][0]==a[0][2]&&a[0][2]==a[1][1]&&a[1][1]==a[1][3]))return false;
    27     if(!(a[1][0]==a[1][2]&&a[1][2]==a[2][1]&&a[2][1]==a[2][3]))return false;
    28     if(!(a[2][0]==a[2][2]&&a[2][2]==a[3][1]&&a[3][1]==a[3][3]))return false;
    29     if(!(a[3][0]==a[3][2]&&a[3][2]==a[0][1]&&a[0][1]==a[0][3]))return false;
    30     if(!(a[4][0]==a[4][1]&&a[4][1]==a[4][2]&&a[4][2]==a[4][3]))return false;
    31     if(!(a[5][0]==a[5][1]&&a[5][1]==a[5][2]&&a[5][2]==a[5][3]))return false;
    32     return true;
    33 }
    34 bool check3() {
    35     if(!(a[0][0]==a[0][1]&&a[0][1]==a[0][2]&&a[0][2]==a[0][3]))return false;
    36     if(!(a[2][0]==a[2][1]&&a[2][1]==a[2][2]&&a[2][2]==a[2][3]))return false;
    37     if(!(a[1][0]==a[1][1]&&a[1][1]==a[5][1]&&a[5][1]==a[5][3]))return false;
    38     if(!(a[5][0]==a[5][2]&&a[5][2]==a[3][0]&&a[3][0]==a[3][1]))return false;
    39     if(!(a[3][2]==a[3][3]&&a[3][3]==a[4][0]&&a[4][0]==a[4][2]))return false;
    40     if(!(a[4][1]==a[4][3]&&a[4][3]==a[1][2]&&a[1][2]==a[1][3]))return false;
    41     return true;
    42 }
    43 bool check4() {
    44     if(!(a[0][0]==a[0][1]&&a[0][1]==a[0][2]&&a[0][2]==a[0][3]))return false;
    45     if(!(a[2][0]==a[2][1]&&a[2][1]==a[2][2]&&a[2][2]==a[2][3]))return false;
    46     if(!(a[1][0]==a[1][1]&&a[1][1]==a[4][0]&&a[4][0]==a[4][2]))return false;
    47     if(!(a[5][0]==a[5][2]&&a[5][2]==a[1][2]&&a[1][2]==a[1][3]))return false;
    48     if(!(a[3][2]==a[3][3]&&a[3][3]==a[5][1]&&a[5][1]==a[5][3]))return false;
    49     if(!(a[4][1]==a[4][3]&&a[4][3]==a[3][0]&&a[3][0]==a[3][1]))return false;
    50     return true;
    51 }
    52 bool check5() {
    53     if(!(a[1][0]==a[1][1]&&a[1][1]==a[1][2]&&a[1][2]==a[1][3]))return false;
    54     if(!(a[3][0]==a[3][1]&&a[3][1]==a[3][2]&&a[3][2]==a[3][3]))return false;
    55     if(!(a[0][0]==a[0][1]&&a[0][1]==a[5][2]&&a[5][2]==a[5][3]))return false;
    56     if(!(a[5][0]==a[5][1]&&a[5][1]==a[2][0]&&a[2][0]==a[2][1]))return false;
    57     if(!(a[2][2]==a[2][3]&&a[2][3]==a[4][2]&&a[4][2]==a[4][3]))return false;
    58     if(!(a[4][0]==a[4][1]&&a[4][1]==a[0][2]&&a[0][2]==a[0][3]))return false;
    59     return true;
    60 }
    61 bool check6() {
    62     if(!(a[1][0]==a[1][1]&&a[1][1]==a[1][2]&&a[1][2]==a[1][3]))return false;
    63     if(!(a[3][0]==a[3][1]&&a[3][1]==a[3][2]&&a[3][2]==a[3][3]))return false;
    64     if(!(a[0][0]==a[0][1]&&a[0][1]==a[4][2]&&a[4][2]==a[4][3]))return false;
    65     if(!(a[5][0]==a[5][1]&&a[5][1]==a[0][2]&&a[0][2]==a[0][3]))return false;
    66     if(!(a[2][2]==a[2][3]&&a[2][3]==a[5][2]&&a[5][2]==a[5][3]))return false;
    67     if(!(a[4][0]==a[4][1]&&a[4][1]==a[2][0]&&a[2][0]==a[2][1]))return false;
    68     return true;
    69 }
    70 int main() {
    71     int t;
    72     cin >> t;
    73     while(t--) {
    74         memset(b,0,sizeof(b));
    75         for(int i = 0; i < 6; i ++) {
    76             for(int j = 0; j < 4; j ++) {
    77                 scanf("%d", &a[i][j]);
    78                 b[a[i][j]]++;
    79             }
    80         }
    81         if(check() || check1() || check2() || check3() || check4() || check5() || check6()) printf("YES
    ");
    82         else printf("NO
    ");
    83     }
    84     return 0;
    85 }
  • 相关阅读:
    2019 ICPC Malaysia National H题
    欧拉定理证明
    P3384 【模板】树链剖分
    HDU 6070 Dirt Ratio(线段树、二分)
    51Nod 1571 最近等对(线段树、离线查询)
    51Nod 1781 Pinball(线段树、dp、离散化)
    51Nod 1494 选举拉票(权值线段树)
    51Nod 1766 树上的最远点对(欧拉序、lca、线段树区间合并)
    lintcode-179-更新二进制位
    lintcode-178-图是否是树
  • 原文地址:https://www.cnblogs.com/xingkongyihao/p/7327292.html
Copyright © 2011-2022 走看看