zoukankan      html  css  js  c++  java
  • Educational Codeforces Round 32 E

    E. Maximum Subsequence

    You are given an array a consisting of n integers, and additionally an integer m. You have to choose some sequence of indices b1, b2, ..., bk (1 ≤ b1 < b2 < ... < bk ≤ n) in such a way that the value of is maximized. Chosen sequence can be empty.

    Print the maximum possible value of .

    Input

    The first line contains two integers n and m (1 ≤ n ≤ 35, 1 ≤ m ≤ 109).

    The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109).

    Output

    Print the maximum possible value of .

    Examples
    Input
    4 4
    5 2 4 1
    Output
    3
    Input
    3 20
    199 41 299
    Output
    19
    Note

    In the first example you can choose a sequence b = {1, 2}, so the sum is equal to 7 (and that's 3 after taking it modulo 4).

    In the second example you can choose a sequence b = {3}.

    有一串数列   可以从中任取k个数字   令k个数字相加除摸m   求最大的值。

    n<=35  如果直接dfs的话  是2^35看到会爆掉,所以可以分两次  这样最大也就是2^18  才二十多万看到能过了。

    先求出前半部分的,在求出后半部分的。然后在其中一个里找某个数  使的更接近m就行,这样就要用到二分了

    总的复杂度是2^(n/2)*log(n/2)  足够算出这个题目了。

     1 #include <bits/stdc++.h>
     2 #define ll long long
     3 using namespace std;
     4 const int N = 1<<18;
     5 ll a[40], b[40], c[N], d[N], k, ans, sum, n, m;
     6 void dfs(int x) {
     7     if(x == ans + 1) {
     8         c[++k] = sum%m;
     9         return ;
    10     }
    11     sum += b[x]; dfs(x + 1);
    12     sum -= b[x]; dfs(x + 1);
    13 }
    14 int main() {
    15     cin >> n >> m;
    16     for(int i = 1; i <= n; i ++) cin >> a[i], a[i] %= m, b[i] = a[i];
    17     ans = n/2;
    18     dfs(1);
    19     ll n1 = k;
    20     for(int i = 1; i <= k; i ++) d[i] = c[i];
    21     memset(c, 0, sizeof(c));
    22     ans = n; k = 0;
    23     dfs(n/2+1);
    24     ll MAX = -1;
    25     sort(d+1,d+n1+1);
    26     for(int i = 1; i <= k; i ++) {
    27         int t = lower_bound(d+1,d+n1,m-c[i]-1)-d;  
    28         while(c[i]+d[t]>=m)t--;  
    29         MAX=max(MAX,c[i] + d[t]);  
    30     }
    31     printf("%lld
    ",MAX);
    32     return 0;
    33 }
  • 相关阅读:
    linux常用命令笔记
    head first html与css
    多线程编程核心技术日记
    nio
    排序算法
    随笔
    数据库读写分离
    购物网站设计
    http
    servlet初始化
  • 原文地址:https://www.cnblogs.com/xingkongyihao/p/7819416.html
Copyright © 2011-2022 走看看