zoukankan      html  css  js  c++  java
  • Codeforces Round #210 (Div. 1) B 二分+dp

    B. Levko and Array
     
    standard output

    Levko has an array that consists of integers: a1, a2, ... , an. But he doesn’t like this array at all.

    Levko thinks that the beauty of the array a directly depends on value c(a), which can be calculated by the formula:

    The less value c(a) is, the more beautiful the array is.

    It’s time to change the world and Levko is going to change his array for the better. To be exact, Levko wants to change the values of at most k array elements (it is allowed to replace the values by any integers). Of course, the changes should make the array as beautiful as possible.

    Help Levko and calculate what minimum number c(a) he can reach.

    Input

    The first line contains two integers n and k (1 ≤ k ≤ n ≤ 2000). The second line contains space-separated integers a1, a2, ... , an( - 109 ≤ ai ≤ 109).

    Output

    A single number — the minimum value of c(a) Levko can get.

    Examples
    input
    Copy
    5 2
    4 7 4 7 4
    output
    Copy
    0
    input
    Copy
    3 1
    -100 0 100
    output
    Copy
    100
    input
    Copy
    6 3
    1 2 3 7 8 9
    output
    Copy
    1
    Note

    In the first sample Levko can change the second and fourth elements and get array: 4, 4, 4, 4, 4.

    In the third sample he can get array: 1, 2, 3, 4, 5, 6.

    二分+DP问题

    ok(x) 表示max(abs(a[i]-a[i+1])) = x 时修改的次数是否小于等于K

    ans[i] 表示前i个数最少修改多少使的相差小于x
    当a[i]-a[j] <= x(i-j)时 表示可以不修改第i个和第j个,修改j-i中间的数就能使的
    相差小于x了。

     1 #include <bits/stdc++.h>
     2 #define ll long long
     3 using namespace std;
     4 const int N = 2020;
     5 ll a[N], ans[N];
     6 ll n, k;
     7 bool ok(ll x) {
     8     ll res = N;
     9     for(ll i = 1; i <= n; i ++) {
    10         ans[i] = i-1;
    11         for(ll j = 1; j < i; j ++) {
    12             if(abs(a[i]-a[j]) <= x*(i-j))
    13                 ans[i] = min(ans[i], ans[j]+i-j-1);
    14         }
    15         res = min(res,ans[i]+n-i);
    16     }
    17     return res <= k;
    18 }
    19 int main() {
    20     cin >> n >> k;
    21     for(int i = 1; i <= n; i ++) cin >> a[i];
    22     ll l = 0, r = 2e9;
    23     while(l < r) {
    24         ll m = (l+r) >> 1;
    25         if(ok(m)) r = m;
    26         else l = m+1;
    27     }
    28     printf("%lld
    ",r);
    29     return 0;
    30 }
  • 相关阅读:
    【BZOJ3190】[JLOI2013]赛车 单调栈+几何
    【BZOJ2738】矩阵乘法 整体二分
    PR 批量导入
    JAVA 水果机游戏及编码
    sap 图标查看
    ABAP 给动态变量赋值
    abap 数字移动小游戏
    FI模块与SD、MM的接口配置方法
    信用控制增强
    SAP-财务知识点
  • 原文地址:https://www.cnblogs.com/xingkongyihao/p/8906332.html
Copyright © 2011-2022 走看看