zoukankan      html  css  js  c++  java
  • 2018 Multi-University Training Contest 4 B Harvest of Apples 莫队算法

    Problem B. Harvest of Apples

    Problem Description
    There are n apples on a tree, numbered from 1 to n.
    Count the number of ways to pick at most m apples.
     
    Input
    The first line of the input contains an integer T (1T105) denoting the number of test cases.
    Each test case consists of one line with two integers n,m (1mn105).
     
    Output
    For each test case, print an integer representing the number of ways modulo 109+7.
     
    Sample Input
    2 5 2 1000 500
     
    Sample Output
    16 924129523
     
    Source

    题解: 

     1 #include <bits/stdc++.h>
     2 #define ll long long
     3 using namespace std;
     4 const ll mod = 1e9+7;
     5 const int N = 1e5+10;
     6 struct mo{
     7     int n, k,id;
     8 }q[N];
     9 ll Be[N], fac[N], inv[N], res[N], unit, t;
    10 vector<mo> lst[N];
    11 ll pow_mod(ll x, ll n){  
    12     ll res=1;  
    13     while(n>0){  
    14         if(n&1)res=res*x%mod;  
    15         x=x*x%mod;  
    16         n>>=1;  
    17     }  
    18     return res;  
    19 }
    20 bool cmp(mo a, mo b) {
    21     return a.n < b.n;
    22 }
    23 ll C(int a, int b) {
    24     return fac[a] * inv[b] % mod * inv[a-b] % mod;
    25 }
    26 int main() {
    27     int mx = 100000; unit = sqrt(mx);
    28     fac[0] = 1;for(int i = 1; i <= mx; i ++) fac[i] = fac[i-1] * i %mod, Be[i] = i/unit + 1;
    29     inv[mx] = pow_mod(fac[mx], mod-2); for(int i = mx-1; i >= 0; i --) inv[i] = inv[i+1] *(i+1) % mod;
    30     scanf("%lld", &t);
    31     for(int i = 1; i <= t; i ++) {
    32         scanf("%d%d",&q[i].n,&q[i].k), q[i].id = i;
    33         lst[Be[q[i].k]].push_back(q[i]);
    34     }
    35     for(int i = 1; i <= mx; i ++) {
    36         if(lst[i].size()) {
    37             sort(lst[i].begin(),lst[i].end(), cmp);
    38             ll val = 0, in = lst[i][0].n, ik = -1;
    39             for(auto e : lst[i]) {
    40                 while(in < e.n) val = (val + val + mod - C(in++, ik)) % mod;
    41                 while(ik < e.k) val = (val + C(in, ++ik)) % mod;
    42                 while(ik > e.k) val = (val + mod - C(in, ik--)) % mod;
    43                 res[e.id] = val;                
    44             }
    45         }
    46     }
    47     for(int i = 1; i <= t; i ++) printf("%lld
    ",res[i]);
    48     return 0;
    49 }
  • 相关阅读:
    django学习笔记
    linux安装tree命令
    SecureCRT卡死的问题
    vim常用快捷键记录
    项目经理应具备的9种能力
    regsvr32命令
    通知栏构建和取消的基本认识
    AlertDialog 对话框 5种
    异步任务——AsyncTask的初步认识
    BaseAdapter的使用与优化
  • 原文地址:https://www.cnblogs.com/xingkongyihao/p/9407727.html
Copyright © 2011-2022 走看看