zoukankan      html  css  js  c++  java
  • 2018 Multi-University Training Contest 4 B Harvest of Apples 莫队算法

    Problem B. Harvest of Apples

    Problem Description
    There are n apples on a tree, numbered from 1 to n.
    Count the number of ways to pick at most m apples.
     
    Input
    The first line of the input contains an integer T (1T105) denoting the number of test cases.
    Each test case consists of one line with two integers n,m (1mn105).
     
    Output
    For each test case, print an integer representing the number of ways modulo 109+7.
     
    Sample Input
    2 5 2 1000 500
     
    Sample Output
    16 924129523
     
    Source

    题解: 

     1 #include <bits/stdc++.h>
     2 #define ll long long
     3 using namespace std;
     4 const ll mod = 1e9+7;
     5 const int N = 1e5+10;
     6 struct mo{
     7     int n, k,id;
     8 }q[N];
     9 ll Be[N], fac[N], inv[N], res[N], unit, t;
    10 vector<mo> lst[N];
    11 ll pow_mod(ll x, ll n){  
    12     ll res=1;  
    13     while(n>0){  
    14         if(n&1)res=res*x%mod;  
    15         x=x*x%mod;  
    16         n>>=1;  
    17     }  
    18     return res;  
    19 }
    20 bool cmp(mo a, mo b) {
    21     return a.n < b.n;
    22 }
    23 ll C(int a, int b) {
    24     return fac[a] * inv[b] % mod * inv[a-b] % mod;
    25 }
    26 int main() {
    27     int mx = 100000; unit = sqrt(mx);
    28     fac[0] = 1;for(int i = 1; i <= mx; i ++) fac[i] = fac[i-1] * i %mod, Be[i] = i/unit + 1;
    29     inv[mx] = pow_mod(fac[mx], mod-2); for(int i = mx-1; i >= 0; i --) inv[i] = inv[i+1] *(i+1) % mod;
    30     scanf("%lld", &t);
    31     for(int i = 1; i <= t; i ++) {
    32         scanf("%d%d",&q[i].n,&q[i].k), q[i].id = i;
    33         lst[Be[q[i].k]].push_back(q[i]);
    34     }
    35     for(int i = 1; i <= mx; i ++) {
    36         if(lst[i].size()) {
    37             sort(lst[i].begin(),lst[i].end(), cmp);
    38             ll val = 0, in = lst[i][0].n, ik = -1;
    39             for(auto e : lst[i]) {
    40                 while(in < e.n) val = (val + val + mod - C(in++, ik)) % mod;
    41                 while(ik < e.k) val = (val + C(in, ++ik)) % mod;
    42                 while(ik > e.k) val = (val + mod - C(in, ik--)) % mod;
    43                 res[e.id] = val;                
    44             }
    45         }
    46     }
    47     for(int i = 1; i <= t; i ++) printf("%lld
    ",res[i]);
    48     return 0;
    49 }
  • 相关阅读:
    开启CTF大门
    关于windows下scapy出现log_runtime问题
    Python关于Threading暂停恢复解决办法
    angr入门之CLE
    Linux信号量
    IDApython 命令
    Array 数组对象
    随机数 random()
    四舍五入round()
    向下取整floor()
  • 原文地址:https://www.cnblogs.com/xingkongyihao/p/9407727.html
Copyright © 2011-2022 走看看