zoukankan      html  css  js  c++  java
  • 肘部法则

    import pandas as pd
    from sklearn.cluster import KMeans
    import matplotlib.pyplot as plt
     
    df_features = pd.read_csv(r'11111111.csv',encoding='gbk') # 读入数据
    #print(df_features)
    '利用SSE选择k'
    SSE = []  # 存放每次结果的误差平方和
    for k in range(1,9):
        estimator = KMeans(n_clusters=k)  # 构造聚类器
        estimator.fit(df_features[['0','1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20','21','22','23','24','25','26','27','28','29','30','31','32']])
        SSE.append(estimator.inertia_) # estimator.inertia_获取聚类准则的总和
    X = range(1,9)
    plt.xlabel('k')
    plt.ylabel('SSE')
    plt.plot(X,SSE,'o-')
    plt.show()
  • 相关阅读:
    暂时转换
    内置函数⼆
    day13内置函数⼀
    day12⽣成器和⽣成器表达式
    20181031作业
    20181030函数2
    20181029函数1
    20181026
    20181025
    20181024
  • 原文地址:https://www.cnblogs.com/xingnie/p/10334986.html
Copyright © 2011-2022 走看看