主要记python工具包sklearn的学习内容:
一、Regression & Classification
1.1. Generalized Linear Models
1.2. Linear and Quadratic Discriminant Analysis
1.4. Support Vector Machines
1.5. Stochastic Gradient Descent
1.6. Nearest Neighbors
1.7. Gaussian Processes
1.8. Cross decomposition
1.9. Naive Bayes
1.10. Decision Trees
1.11. Ensemble methods
1.12. Multiclass and multilabel algorithm
1.13. Feature selection
1.14. Semi-Supervised
1.15. Isotonic regression
1.16. Probability calibration
1.17. Neural network models (supervised)
二、Clustering
三、Dimensionality reduction
四、Model selection
六、Preprocessing