作者:桂。
时间:2017-05-23 15:52:51
链接:http://www.cnblogs.com/xingshansi/p/6895710.html
一、理论描述
Kernel ridge regression (KRR)是对Ridge regression的扩展,看一下Ridge回归的准则函数:
求解
一些文章利用矩阵求逆,其实求逆只是表达方便,也可以直接计算。看一下KRR的理论推导,注意到
左乘,并右乘,得到
利用Ridge回归中的最优解
对于xxT的形式可以利用kernel的思想:
可以看出只需要计算内积就可以,关于核函数的选择以及特性,参考另一篇文章。
先来验证一下理论的正确性,用MATLAB仿真一下:
clc;clear all;close all; x = [-5:.1:5]'; y = 0.1*x.^3 + 0.3*x.^2 + randn(length(x),1); subplot (2,2,1) plot(x,y,'k');hold on; title('原数据') subplot (2,2,2) w1 = inv(x'*x)*x'*y; %lsqr plot(x,y,'k');hold on; plot(x,w1*x,'r--'); title('最小二乘') subplot (2,2,3) w2 = inv(x'*x+0.5)*x'*y; %ridge lambda = 0.5 plot(x,y,'k');hold on; plot(x,w2*x,'r--'); title('Ridge 回归') subplot (2,2,4) K = (1+x*x').^3;%kernel ridge regression ,lambda = 0.5 z = K*pinv(K + 0.5)*y; plot(x,y,'k');hold on; plot(x,z,'r--'); title('Kernel Ridge 回归')
结果图中可以看出,kernel 起到了效果:
二、Sklearn基本基本操作
基本用法(采用交叉验证):
kr = GridSearchCV(KernelRidge(kernel='rbf', gamma=0.1), cv=5, param_grid={"alpha": [1e0, 0.1, 1e-2, 1e-3], "gamma": np.logspace(-2, 2, 5)}) kr.fit(X[:train_size], y[:train_size]) y_kr = kr.predict(X_plot)
应用实例:
from __future__ import division import time import numpy as np from sklearn.model_selection import GridSearchCV from sklearn.kernel_ridge import KernelRidge import matplotlib.pyplot as plt rng = np.random.RandomState(0) ############################################################################# # Generate sample data X = 5 * rng.rand(10000, 1) y = np.sin(X).ravel() # Add noise to targets y[::5] += 3 * (0.5 - rng.rand(int(X.shape[0]/5))) X_plot = np.linspace(0, 5, 100000)[:, None] ############################################################################# # Fit regression model train_size = 100 kr = GridSearchCV(KernelRidge(kernel='rbf', gamma=0.1), cv=5, param_grid={"alpha": [1e0, 0.1, 1e-2, 1e-3], "gamma": np.logspace(-2, 2, 5)}) t0 = time.time() kr.fit(X[:train_size], y[:train_size]) kr_fit = time.time() - t0 print("KRR complexity and bandwidth selected and model fitted in %.3f s" % kr_fit) t0 = time.time() y_kr = kr.predict(X_plot) kr_predict = time.time() - t0 print("KRR prediction for %d inputs in %.3f s" % (X_plot.shape[0], kr_predict)) ############################################################################# # look at the results plt.scatter(X[:100], y[:100], c='k', label='data', zorder=1) plt.hold('on') plt.plot(X_plot, y_kr, c='g', label='KRR (fit: %.3fs, predict: %.3fs)' % (kr_fit, kr_predict)) plt.xlabel('data') plt.ylabel('target') plt.title('Kernel Ridge') plt.legend()
参考
- http://scikit-learn.org/stable/modules/generated/sklearn.kernel_ridge.KernelRidge.html#sklearn.kernel_ridge.KernelRidge