zoukankan      html  css  js  c++  java
  • Pandas系列教程(8)pandas数据排序

    pandas数据排序

    1. Series的排序:

    Series.sort_values(ascending=True, inplace=Flase)

    参数说明:

      1. ascending:默认为True升序排列,为Flase降序排序

      2. inplace: 是否修改原始的Series

    2. DataFrame的排序

    DataFrame.sort_values(by, ascending=True, inplace=Flase )

    参数说明:

      1. by: 字符串或者List<字符串>,单列排序或者多列排序

      2. ascending:bool或者list,升序还是降序,如果是list对应by的多列

      3. inplace:是否修改原始的DataFrame

    1、读取数据

    import pandas as pd
    
    file_path = "../../datas/files/beijing_tianqi_2018.csv"
    df = pd.read_csv(file_path)
    
    # 替换温度的后缀℃, 并转为int32(修改列)
    df.loc[:, 'bWendu'] = df.loc[:, 'bWendu'].str.replace('', '').astype('int32')
    df.loc[:, 'yWendu'] = df.loc[:, 'yWendu'].str.replace('', '').astype('int32')
    
    print(df.head(3))

    2、Series排序

    import pandas as pd
    
    file_path = "../../datas/files/beijing_tianqi_2018.csv"
    df = pd.read_csv(file_path)
    
    df.loc[:, 'bWendu'] = df.loc[:, 'bWendu'].str.replace('', '').astype('int32')
    df.loc[:, 'yWendu'] = df.loc[:, 'yWendu'].str.replace('', '').astype('int32')
    
    print('*' * 25, '打印前几行数据', '*' * 25)
    print(df.head())
    
    # -------------------- series排序 --------------------- #
    print('*' * 25, 'aqi升序', '*' * 25)
    print(df['aqi'].sort_values())
    
    print('*' * 25, 'aqi降序', '*' * 25)
    print(df['aqi'].sort_values(ascending=False))
    
    print('*' * 25, 'tianqi中文排列', '*' * 25)
    print(df['tianqi'].sort_values())

    3、DataFrame排序

    单列排序

    import pandas as pd
    
    file_path = "../../datas/files/beijing_tianqi_2018.csv"
    df = pd.read_csv(file_path)
    
    df.loc[:, 'bWendu'] = df.loc[:, 'bWendu'].str.replace('', '').astype('int32')
    df.loc[:, 'yWendu'] = df.loc[:, 'yWendu'].str.replace('', '').astype('int32')
    
    print('*' * 25, '打印前几行数据', '*' * 25)
    print(df.head())
    
    # ---------------------- DataFrame排序 ----------------------- #
    # 单列排序
    print('*' * 25, 'aqi升序', '*' * 25)
    print(df.sort_values(by='aqi'))
    
    print('*' * 25, 'aqi降序', '*' * 25)
    print(df.sort_values(by='aqi', ascending=False))

    多列排序

    import pandas as pd
    
    file_path = "../../datas/files/beijing_tianqi_2018.csv"
    df = pd.read_csv(file_path)
    
    df.loc[:, 'bWendu'] = df.loc[:, 'bWendu'].str.replace('', '').astype('int32')
    df.loc[:, 'yWendu'] = df.loc[:, 'yWendu'].str.replace('', '').astype('int32')
    
    print('*' * 25, '打印前几行数据', '*' * 25)
    print(df.head())
    
    # ---------------------- DataFrame排序 ----------------------- #
    # 多列排序
    print('*' * 25, '按空气质量等级,最高温度排序,默认升序', '*' * 25)
    print(df.sort_values(by=['aqiLevel', 'bWendu']))
    
    print('*' * 25, '按空气质量等级,最高温度排序,指定降序', '*' * 25)
    print(df.sort_values(by=['aqiLevel', 'bWendu'], ascending=False))
    
    print('*' * 25, '分别指定升序和降序', '*' * 25)
    print(df.sort_values(by=['aqiLevel', 'bWendu'], ascending=[True, False]))
  • 相关阅读:
    UVA 10564 Paths through the Hourglass DP
    HDU 3397 Sequence operation 线段树 成段更新 区间合并
    HDU 3308 LCIS 线段树 单点更新+区间合并
    POJ 3667 Hotel 线段树 区间合并
    UVALive 3942 Remember the Word Tire+DP
    POJ 1703 Find them, Catch them
    UVA 1366 Martian Mining DP
    UVA 1456 Cellular Network 贪心+DP
    UVA 11573 Ocean Currents
    【ACM】hdu_zs1_1003_放大的X _201307271557
  • 原文地址:https://www.cnblogs.com/xingxingnbsp/p/13851846.html
Copyright © 2011-2022 走看看