基础准备工作
百度api接口准备:

接下来就是创建应用

选择需要的,然后生成api接口
图灵机器人准备:
创建一个机器人

进行机器人的设置

写后台代码
from flask import Flask,render_template,jsonify,request,send_file
from uuid import uuid4
from others import audio2text ,text2audio,my_nlp
app = Flask(__name__)
@app.route("/")
def index():
return render_template("WebToy.html")
@app.route("/upload",methods=["post"])
def upload():
fi = request.files.get("reco")
fi_name = f"{uuid4()}.wav"
fi.save(fi_name)
text = audio2text(fi_name)
new_text = my_nlp(text)
filename = text2audio(new_text)
ret = {
"filename":filename,
"content":new_text,
"code":0
}
return jsonify(ret)
@app.route("/get_file/<name>")
def get_file(name):
return send_file(name)
if __name__ == '__main__':
app.run("0.0.0.0",9527)
import os
import requests
from aip import AipSpeech
from aip import AipNlp
from uuid import uuid4
""" 你的 APPID AK SK """
APP_ID = '15842542'
API_KEY = 'AMphU5SfVThjqH6Ii7BFnacm'
SECRET_KEY = 'aHiCNZ3psw1cOiW62p0nQMvaG4DhLrjS'
client = AipSpeech(APP_ID, API_KEY, SECRET_KEY)
nlp_client = AipNlp(APP_ID, API_KEY, SECRET_KEY)
# 读取文件
def get_file_content(filepath):
os.system(f"ffmpeg -y -i {filepath} -acodec pcm_s16le -f s16le -ac 1 -ar 16000 {filepath}.pcm")
with open(f"{filepath}.pcm", "rb") as f:
return f.read()
# 识别本地文件
def audio2text(filepath):
res = client.asr(get_file_content(filepath), 'pcm', 16000, {
"dev_pid": 1536,
})
text = res.get("result")[0]
return text
# 智能问答
def to_ling(text, uid):
data = {
"perception": {
"inputText": {
"text": "附近的酒店"
}
},
"userInfo": {
"apiKey": "6d84dea150a34a3db748a9728fa93fec",
"userId": "1"
}
}
data["perception"]["inputText"]["text"] = text
data["userInfo"]["userId"] = uid
res = requests.post("http://openapi.tuling123.com/openapi/api/v2",json=data)
res_json = res.json()
text = res_json.get("results")[0].get('values').get("text")
return text
def my_nlp(text):
if nlp_client.simnet(text, "你叫什么名字").get("score") >= 0.75:
A = "我叫车干儿"
return A
if nlp_client.simnet(text, "你吃饭了没有").get("score") >= 0.75:
A = "现在才几点,我还没有吃饭了"
return A
A = to_ling(text,2)
return A
# 语音合成
def text2audio(text):
result = client.synthesis(text, "zh", 1, {
"vol": 6,
"per": 4,
"spd": 4,
"pit": 7,
})
filename = f"{uuid4()}.mp3"
if not isinstance(result, dict):
with open(filename, "wb") as f1:
f1.write(result)
return filename
#前端代码
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>我是玩具</title>
</head>
<body>
<p>
<audio id="player" controls autoplay></audio>
</p>
<button onclick="start_reco()">录音</button>
<button onclick="stop_reco()">发送录音</button>
<div id="mes">
</div>
</body>
<script type="text/javascript" src="/static/Recorder.js"></script>
<script type="text/javascript" src="/static/jquery-3.3.1.min.js"></script>
<script type="text/javascript">
var serv = "http://192.168.11.54:9527";
var reco = null;
var audio_context = new AudioContext();//音频内容对象
navigator.getUserMedia = (navigator.getUserMedia ||
navigator.webkitGetUserMedia ||
navigator.mozGetUserMedia ||
navigator.msGetUserMedia);
navigator.getUserMedia({audio: true}, create_stream, function (err) {
console.log(err)
});
function create_stream(user_media) {
var stream_input = audio_context.createMediaStreamSource(user_media);
reco = new Recorder(stream_input);
}
function start_reco() {
reco.record();
}
function stop_reco() {
reco.stop();
reco.exportWAV(function (wav_file) {
console.log(wav_file);
var formdata = new FormData(); // form 表单 {key:value}
formdata.append("reco", wav_file); // form input type="file"
$.ajax({
url: serv + "/upload",
type: 'post',
processData: false,
contentType: false,
data: formdata,
dataType: 'json',
success: function (data) {
if(data.code == 0) {
document.getElementById("player").src="http://192.168.11.54:9527/get_file/"+ data.filename;
document.getElementById("mes").innerText=data.content;
}
}
})
});
reco.clear();
}
</script>
</html>
注意事项:
录音的时候,文件需要进行一个转码,需要安装ffmpeg
安装:pip install ffmpeg
添加环境变量:



添加环境变量即可!!!