import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # 使用numpy生成200个随机点 x_data = np.linspace(-0.5, 0.5, 200)[:, np.newaxis] noise = np.random.normal(0, 0.02, x_data.shape) y_data = np.square(x_data) + noise # 定义两个placeholder x = tf.placeholder(tf.float32, [None, 1]) y = tf.placeholder(tf.float32, [None, 1]) # 定义神经网络中间层 Weights_L1 = tf.Variable(tf.random_normal([1, 10])) biases_L1 = tf.Variable(tf.zeros([1, 10])) Wx_plus_b_L1 = tf.matmul(x, Weights_L1) + biases_L1 L1 = tf.nn.tanh(Wx_plus_b_L1) # 定义神经网络输出层 Weights_L2 = tf.Variable(tf.random_normal([10, 1])) biases_L2 = tf.Variable(tf.zeros([1, 1])) Wx_plus_b_L2 = tf.matmul(L1, Weights_L2) + biases_L2 prediction = tf.nn.tanh(Wx_plus_b_L2) # 二次代价函数 loss = tf.reduce_mean(tf.square(y - prediction)) # 使用梯度下降法训练 train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) with tf.Session() as sess: # 变量初始化 sess.run(tf.global_variables_initializer()) for _ in range(2000): sess.run(train_step, feed_dict={x: x_data, y: y_data}) # 获得预测值 prediction_value = sess.run(prediction, feed_dict={x: x_data}) # 画图 plt.figure() plt.scatter(x_data, y_data) plt.plot(x_data, prediction_value, 'r-', lw=5) plt.show()
MNIST数据集分类简单版本(神经网络:一个输入层,一个输出层)
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 载入数据集 mnist = input_data.read_data_sets("MNIST_data", one_hot=True) # 每个批次的大小 batch_size = 100 # 计算一共有多少个批次 n_batch = mnist.train.num_examples // batch_size # 定义两个placeholder x = tf.placeholder(tf.float32, [None, 784]) y = tf.placeholder(tf.float32, [None, 10]) # 创建一个简单的神经网络 W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) prediction = tf.nn.softmax(tf.matmul(x, W) + b) # 二次代价函数 loss = tf.reduce_mean(tf.square(y - prediction)) # 使用梯度下降法 train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) # 初始化变量 init = tf.global_variables_initializer() # 结果存放在一个布尔型列表中 correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1)) #argmax返回一维张量中最大的值所在的位置 # 求准确率 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) with tf.Session() as sess: sess.run(init) for epoch in range(21): for batch in range(n_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys}) acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels}) print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))