1.本地LOCAL环境安装Spark并试运行配置(在Ubuntu系统下例子)
# 打开文件配置环境变量: JAVA,SCALA,SPARK,HADOOP,SBTgedit /etc/profile # 在文件中加入以下行export JAVA_HOME=/usr/java/jdk1.8.0_51export PATH=$JAVA_HOME/bin:$PATHexport CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jarexport SCALA_HOME=/usr/scala/scala-2.11.7export PATH=$SCALA_HOME/bin:$PATHexport SPARK_HOME=/usr/spark/spark-1.4.1-bin-without-hadoopexport PATH=$SPARK_HOME/bin:$PATHexport SBT_HOME=/usr/scala/sbtexport PATH=$SBT_HOME/bin:$PATHexport HADOOP_HOME=/usr/hadoop/hadoop-2.7.0export PATH=$HADOOP_HOME/bin:$PATHexport CLASSPATH=$CLASSPATH:$HADOOP_HOME/lib # 更新系统文件source /etc/profile |
修改 Spark的配置文件 Spark-env.sh,将Spark-env.sh.template 文件修改名称并添加以下环境变量和类变量
export SCALA_HOME=/usr/scala/scala-2.11.7export JAVA_HOME=/usr/java/jdk1.8.0_51export HADOOP_CONF_DIR=/usr/hadoop/hadoop-2.7.0/etc/hadoopexport SPARK_LOCAL_IP=localhostexport SPARK_PUBLIC_DNS=localhostexport SPARK_CLASSPATH=${HADOOP_HOME}/share/hadoop/common/hadoop-common-2.7.0.jar:${HADOOP_HOME}/share/hadoop/common/hadoop-nfs-2.7.0.jarexport SPARK_CLASSPATH=${SPARK_CLASSPATH}:${HADOOP_HOME}/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar:${HADOOP_HOME}/share/hadoop/common/lib/slf4j-api-1.7.10.jar:${HADOOP_HOME}/share/hadoop/common/lib/log4j-1.2.17.jar:${HADOOP_HOME}/share/hadoop/common/lib/commons-configuration-1.6.jar:${HADOOP_HOME}/share/hadoop/common/lib/commons-collections-3.2.1.jar:${HADOOP_HOME}/share/hadoop/common/lib/guava-11.0.2.jar:${HADOOP_HOME}/share/hadoop/common/lib/commons-lang-2.6.jar:${HADOOP_HOME}/share/hadoop/common/lib/hadoop-auth-2.7.0.jar:${HADOOP_HOME}/share/hadoop/common/lib/jetty-6.1.26.jarexport SPARK_CLASSPATH=${SPARK_CLASSPATH}:${HADOOP_HOME}/share/hadoop/common/lib/jersey-server-1.9.jar:${HADOOP_HOME}/share/hadoop/common/lib/jersey-core-1.9.jar:${HADOOP_HOME}/share/hadoop/common/lib/jersey-json-1.9.jar:${HADOOP_HOME}/share/hadoop/common/lib/snappy-java-1.0.4.1.jarexport SPARK_CLASSPATH=${SPARK_CLASSPATH}:${HADOOP_HOME}/share/hadoop/mapreduce/hadoop-mapreduce-client-common-2.7.0.jarexport SPARK_CLASSPATH=${SPARK_CLASSPATH}:${SPARK_HOME}/lib/spark-assembly-1.4.1-hadoop2.2.0.jar:${SPARK_HOME}/lib/spark-1.4.1-yarn-shuffle.jar:${SPARK_HOME}/lib/spark-examples-1.4.1-hadoop2.2.0.jar |
当执行./bin/spark-shell 命令行后,出现以下界面代表本地模式成功启动了Spark
2.R执行Spark命令处理文件
library(SparkR)# 新建一个SparkContentsc <- sparkR.init(master="local") |