zoukankan      html  css  js  c++  java
  • SparkR 读取数据& Spark运行的配置

    1.本地LOCAL环境安装Spark并试运行配置(在Ubuntu系统下例子)

    # 打开文件配置环境变量: JAVA,SCALA,SPARK,HADOOP,SBT
    gedit /etc/profile
     
    # 在文件中加入以下行
    export JAVA_HOME=/usr/java/jdk1.8.0_51
    export PATH=$JAVA_HOME/bin:$PATH
    export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
    export SCALA_HOME=/usr/scala/scala-2.11.7
    export PATH=$SCALA_HOME/bin:$PATH
    export SPARK_HOME=/usr/spark/spark-1.4.1-bin-without-hadoop
    export PATH=$SPARK_HOME/bin:$PATH
    export SBT_HOME=/usr/scala/sbt
    export PATH=$SBT_HOME/bin:$PATH
    export HADOOP_HOME=/usr/hadoop/hadoop-2.7.0
    export PATH=$HADOOP_HOME/bin:$PATH
    export CLASSPATH=$CLASSPATH:$HADOOP_HOME/lib
     
    # 更新系统文件
    source /etc/profile

    修改 Spark的配置文件 Spark-env.sh,将Spark-env.sh.template 文件修改名称并添加以下环境变量和类变量

    export SCALA_HOME=/usr/scala/scala-2.11.7
    export JAVA_HOME=/usr/java/jdk1.8.0_51
    export HADOOP_CONF_DIR=/usr/hadoop/hadoop-2.7.0/etc/hadoop
    export SPARK_LOCAL_IP=localhost
    export SPARK_PUBLIC_DNS=localhost
     
    export SPARK_CLASSPATH=${HADOOP_HOME}/share/hadoop/common/hadoop-common-2.7.0.jar:${HADOOP_HOME}/share/hadoop/common/hadoop-nfs-2.7.0.jar
    export SPARK_CLASSPATH=${SPARK_CLASSPATH}:${HADOOP_HOME}/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar:${HADOOP_HOME}/share/hadoop/common/lib/slf4j-api-1.7.10.jar:${HADOOP_HOME}/share/hadoop/common/lib/log4j-1.2.17.jar:${HADOOP_HOME}/share/hadoop/common/lib/commons-configuration-1.6.jar:${HADOOP_HOME}/share/hadoop/common/lib/commons-collections-3.2.1.jar:${HADOOP_HOME}/share/hadoop/common/lib/guava-11.0.2.jar:${HADOOP_HOME}/share/hadoop/common/lib/commons-lang-2.6.jar:${HADOOP_HOME}/share/hadoop/common/lib/hadoop-auth-2.7.0.jar:${HADOOP_HOME}/share/hadoop/common/lib/jetty-6.1.26.jar
     
    export SPARK_CLASSPATH=${SPARK_CLASSPATH}:${HADOOP_HOME}/share/hadoop/common/lib/jersey-server-1.9.jar:${HADOOP_HOME}/share/hadoop/common/lib/jersey-core-1.9.jar:${HADOOP_HOME}/share/hadoop/common/lib/jersey-json-1.9.jar:${HADOOP_HOME}/share/hadoop/common/lib/snappy-java-1.0.4.1.jar
     
    export SPARK_CLASSPATH=${SPARK_CLASSPATH}:${HADOOP_HOME}/share/hadoop/mapreduce/hadoop-mapreduce-client-common-2.7.0.jar
     
    export SPARK_CLASSPATH=${SPARK_CLASSPATH}:${SPARK_HOME}/lib/spark-assembly-1.4.1-hadoop2.2.0.jar:${SPARK_HOME}/lib/spark-1.4.1-yarn-shuffle.jar:${SPARK_HOME}/lib/spark-examples-1.4.1-hadoop2.2.0.jar

    当执行./bin/spark-shell 命令行后,出现以下界面代表本地模式成功启动了Spark

    2.R执行Spark命令处理文件

    library(SparkR)
    # 新建一个SparkContent
    sc <- sparkR.init(master="local")
  • 相关阅读:
    利用Express模拟web安全之---xss的攻与防
    JavaScript之引用类型
    JavaScript之变量、作用域和内存问题
    linux学习之缓存机制
    linux学习之vimrc配置推荐
    linux系统之free命令详解
    JavaScript之函数
    JavaScript之语句
    JavaScript之字符串、对象及操作符
    Navicat for MySQL 之数据库迁移
  • 原文地址:https://www.cnblogs.com/xinping-study/p/6897920.html
Copyright © 2011-2022 走看看