zoukankan      html  css  js  c++  java
  • 特征选择Boruta

    A good feature subset is one that:

    contains features highly correlated with (predictive of) the class,

    yet uncorrelated with (not predictive of) each other. 

    特征选择的三种方法:

    1)单一变量选择法:假设特征变量与响应变量y是线性关系。 看每个特征变量与响应变量y的相关程度。

    2)随机森林法: 假设特征变量与响应变量y是非线性关系。 根据特征的重要性排序, 来选择特征。

    3)RFE( recursive feature elimination):递归特征消除。

    利用pipeline + gridSearchCv 实现 对 特征选择+ 分类器的参数优化选择。  

    Because RandomizedLogisticRegression is used for feature selection, it would need to be cross validated as part of a pipeline. You can apply GridSearchCV to a Pipeline which contains it as a feature selection step along with your classifier of choice. An example might look like:

    pipeline = Pipeline([
      ('fs', RandomizedLogisticRegression()),
      ('clf', LogisticRegression())
    ])
    
    params = {'fs__C':[0.1, 1, 10]}
    
    grid_search = GridSearchCV(pipeline, params)
    grid_search.fit(X_train,y_train)

    参考文献: 

    http://blog.datadive.net/selecting-good-features-part-iv-stability-selection-rfe-and-everything-side-by-side/

    使用Boruta前 ,需要对缺失值进行填充。 

    https://www.analyticsvidhya.com/blog/2016/03/select-important-variables-boruta-package/

    Variable selection is an important aspect of model building which every analyst must learn. After all, it helps in building predictive models free from correlated variables, biases and unwanted noise.

    A lot of novice analysts assume that keeping all (or more) variables will result in the best model as you are not losing any information. Sadly, that is not true!

    How many times has it happened that removing a variable from model has increased your model accuracy ?

    At least, it has happened to me. Such variables are often found to be correlated and hinder achieving higher model accuracy. Today, we’ll learn one of the ways of how to get rid of such variables in R. I must say, R has an incredible CRAN repository. Out of all packages, one such available package for variable selection is Boruta Package.

  • 相关阅读:
    K近邻法
    感知机
    统计学习(统计机器)方法概论
    查看GPU占用率以及指定GPU加速程序
    HYPERSPECTRAL IMAGE CLASSIFICATION USING TWOCHANNEL DEEP CONVOLUTIONAL NEURAL NETWORK阅读笔记
    LRN(local response normalization--局部响应标准化)
    A NEW HYPERSPECTRAL BAND SELECTION APPROACH BASED ON CONVOLUTIONAL NEURAL NETWORK文章笔记
    徒步橘子洲
    高薪
    协作
  • 原文地址:https://www.cnblogs.com/xinping-study/p/7007507.html
Copyright © 2011-2022 走看看