zoukankan      html  css  js  c++  java
  • Leetcode: Word Ladder II

    Question

    Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from start to end, such that:

    1. Only one letter can be changed at a time
    2. Each intermediate word must exist in the dictionary

    For example,

    Given:
    start = "hit"
    end = "cog"
    dict = ["hot","dot","dog","lot","log"]

    Return

      [
        ["hit","hot","dot","dog","cog"],
        ["hit","hot","lot","log","cog"]
      ]
    

    Note:

    • All words have the same length.
    • All words contain only lowercase alphabetic characters.

    Thoughts

    1. preprocess the dictionary and build a graph. Adjacent nodes' distance is 1

    2. using BFS iterator the graph

    3. array father can record the father-son relation in iteration effectively

    4. source code contains unordered_set, so when compiled under Linux system, extra flag must be used. 

    -std=c++11 or

    -std=c++0x

    code Runtime error. Can't figure out why...

    #include <iostream>
    #include <string>
    #include <deque>
    #include <vector>
    #include <unordered_set>
    #include <unordered_map>
    #include <algorithm>
    using namespace std;
    
    class Solution {
    public:
        vector<string> dct;
        vector<int>  graph[10010];
        int father[10010];
        int minDepth;
        vector<vector<string> > res;
        vector<string> party;
    
        vector<vector<string> > findLadders(string start, string end, unordered_set<string> &dict) {
            res.clear(), party.clear();
            dct.clear();
            for(int i = 0; i < dict.size()+3; i ++) {
                graph[i].clear();
                father[i] = -3;
                minDepth = -1;
            }
    
            if(dist(start, end) == 1) {
                party.push_back(start), party.push_back(end);
                res.push_back(party);
                return res;
            }
    
            preprocess(dict);
            deque<int> queue;
            queue.clear();
            for(int i = 0; i < dct.size(); i ++) {
                if(dist(start, dct[i]) == 1) {
                    queue.push_back(i);
                    father[i] = -1;
                    //cout << i << endl;
                }
            }
    
            while(!queue.empty()) {
                int nextInt = queue.front();
                queue.pop_front();
    
                if(dist(end, dct[nextInt]) == 1) { // µÖ´ïÖÕµã, ´æ´¢Í˳ö
                    // handler otherwise
                    minDepth = assemble(party, nextInt, start, end);
                    res.push_back(party);
                    party.clear();
                    while(!queue.empty()) {
                        int finalInt = queue.front();
                        queue.pop_front();
                        if(dist(end, dct[nextInt]) == 1) {
                            if(assemble(party, finalInt, start, end) == minDepth) {
                                res.push_back(party);
                                party.clear();
                            }else{
                                return res;
                            }
                        }
                    }
                    return res;
                }
    
                for(int j = 0; j < graph[nextInt].size(); j ++) {
                    int candidate = graph[nextInt][j];
                    if(father[candidate] == -3) {
                        father[candidate] = nextInt;
                        queue.push_back(candidate);
                    }
                }
            }
        }
    
        int dist(const string &in, const string &ths) {
            int dis = 0;
            for(int i = 0; i < in.size() && dis < 2; i++) {
                if(in[i] != ths[i])
                    dis ++;
            }
            return dis;
        }
    
        void preprocess(unordered_set<string> &dict) {
            for(unordered_set<string>::iterator it1 = dict.begin(); it1 !=  dict.end(); it1 ++)
                dct.push_back(*it1);
            
            // ¹¹½¨ÁÚ½Ó±í
            for(int i = 0; i < dct.size(); i ++) {
                for(int j = 0; j < dct.size(); j ++) {
                    if(dist(dct[i], dct[j]) == 1) {
                        graph[i].push_back(j);
                    }
                }
            }
        }
    
        int assemble(vector<string> &party, const int &nextInt, const string &start, const string &end) {
            party.push_back(end);
            int pre = nextInt;
            while(pre != -1 && pre >= 0) { //WA?
                party.push_back(dct[pre]);
                pre = father[pre];
            }   
            party.push_back(start);
            reverse(party.begin(), party.end());
            return party.size();
        }
    };
    
    int main() {
        string start = "hot";
        string end = "dog";
        unordered_set<string> dict;
        dict.insert("hot");
        dict.insert("dog");
        dict.insert("dot");
        //dict.insert("lot");
        //dict.insert("log");
        
        Solution solution;
        vector<vector<string> > res = solution.findLadders(start, end, dict);
    
        for(int i = 0; i < res.size(); i ++) {
            for(int j = 0; j < res[i].size(); j ++) {
                cout << res[i][j] << " ";
            }
            cout << endl;
        }
        return 0;
    }
    

      

  • 相关阅读:
    linux 查看僵尸进程
    apache 修改最大连接数
    ng压缩后,形参被简化问题解决:
    $rootScope 与 $scope 区别:$rootScope对象是“单例的”——一个模块中只有一个$rootScope;
    vue+webpack在“双十一”导购产品的技术实践
    过滤指令:number currency lowercase(转为小写)/uppercase(转为大写)
    ng-show ng-disabled ng-show ng-hide 值的布尔值改变时,状态发生变化
    二,数据双向绑定
    一、angular:module-Controller-Model-View (模块-控制器-模型-视图);异步请求$http
    5、面向对象
  • 原文地址:https://www.cnblogs.com/xinsheng/p/3515688.html
Copyright © 2011-2022 走看看