In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Ultra-QuickSort produces the output
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5 9 1 0 5 4 3 1 2 3 0
Sample Output
6 0
解题思路:
题目大意是输入个数字,将他们按从小到大的顺序排列,问需要经过多少次的交换。这个题目我们要用归并排序的方法解决。
介绍一下归并排序:1、把序列分成元素个数尽量相等的两半;2、把两半的元素分别排序;3、把两个有序表合并成一个。归并排序的时间复杂度为O(nlogn)
注意事项:只要有一个序列非空,就要继续合并。
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> int A[500004],T[500004]; long long s; using namespace std; void merge_sort(int *A,int x,int y,int *T) { if(y-x>1) { int m=x+(y-x)/2; int p=x,q=m,i=x; merge_sort(A,x,m,T); merge_sort(A,m,y,T); while(p<m||q<y) { if(q>=y||(p<m&&A[p]<=A[q]))//只要一个序列为空就要继续合并 T[i++]=A[p++]; else { T[i++]=A[q++]; s=s+m-p; } } for(i=x;i<y;i++) A[i]=T[i]; } } int main() { int n; while(scanf("%d",&n)&&n) { for(int i=0;i<n;i++) scanf("%d",&A[i]); s=0; //memset(T,0,sizeof(T)); merge_sort(A,0,n,T);//不能把n写成n-1,否则会答案错误 printf("%I64d ",s); } return 0; }