zoukankan      html  css  js  c++  java
  • ACM 线性规划

    Description

    You are going from Dhaka to Chittagong by train and you came to know one of your old friends is going
    from city Chittagong to Sylhet. You also know that both the trains will have a stoppage at junction
    Akhaura at almost same time. You wanted to see your friend there. But the system of the country is
    not that good. The times of reaching to Akhaura for both trains are not fixed. In fact your train can
    reach in any time within the interval [t1, t2] with equal probability. The other one will reach in any
    time within the interval [s1, s2] with equal probability. Each of the trains will stop for w minutes after
    reaching the junction. You can only see your friend, if in some time both of the trains is present in the
    station. Find the probability that you can see your friend.
    Input
    The first line of input will denote the number of cases T (T < 500). Each of the following T line will
    contain 5 integers t1, t2, s1, s2, w (360 ≤ t1 < t2 < 1080, 360 ≤ s1 < s2 < 1080 and 1 ≤ w ≤ 90). All
    inputs t1, t2, s1, s2 and w are given in minutes and t1, t2, s1, s2 are minutes since midnight 00:00.
    Output
    For each test case print one line of output in the format ‘Case #k: p’ Here k is the case number and
    p is the probability of seeing your friend. Up to 1e − 6 error in your output will be acceptable.
    Sample Input
    2
    1000 1040 1000 1040 20
    720 750 730 760 16
    Sample Output
    Case #1: 0.75000000
    Case #2: 0.67111111

    解题思路:

    题目大意是给你两辆火车的到达时间的区间(t1,t2)(s1,s2),到达后停留时间为w分钟,求坐这两辆火车的人相遇的概率,要用到线性规划。

    如果t2+w<s1的话说明无论如何不可能相遇

    然后有四种情况,y=x+w,       y=x-w可直接代入-w

    程序代码:

    #include <iostream>
    #include <cstdio>
    using namespace std;
    double t1,t2,s1,s2,w;
    double fun(double w)
    {
        if(t2+w<s1)
            return 0;
        if(t1+w<=s1)
        {
            if(t2+w<=s2)
                return 0.5*(t2-s1+w)*(t2+w-s1);
            else
                return (t2+w-0.5*s1-0.5*s2)*(s2-s1);
        }
        if(t1+w<s2)
        {
            if(t2+w<=s2)
                return (t2-t1)*(0.5*t2+0.5*t1+w-s1);
            else
                return (t2-t1)*(s2-s1)-0.5*(s2-t1-w)*(s2-w-t1);
        }
        return (t2-t1)*(s2-s1);
    }
    int main()
    {
        int t,k=1;
        cin>>t;
        while(t--)
        {
            cin>>t1>>t2>>s1>>s2>>w;
            double p=(fun(w)-fun(-w))/((t2-t1)*(s2-s1));
            printf("Case #%d: %.8lf
    ",k++,p);
        }
        return 0;
    }

    看了别人的代码,终于让我看懂了

    按 Ctrl+C 复制代码
  • 相关阅读:
    mysql系列~mysqldump使用技巧
    mysql系列~logrotate
    最详细的经典双向电平转换电路的工作原理图文分析
    《USB应用分析精粹:从设备硬件、固件到主机程序设计》已经完稿
    Windows x86环境下使用QEMU安装arm架构银河麒麟V10操作系统
    不动产测绘包含哪些内容
    java问题收集
    java调用接口(rest-assured)
    java调用接口(okhttp )
    testng+allure
  • 原文地址:https://www.cnblogs.com/xinxiangqing/p/4744669.html
Copyright © 2011-2022 走看看