透视 n 点问题,源自相机标定,是计算机视觉的经典问题,广泛应用在机器人定位、SLAM、AR/VR、摄影测量等领域
1 PnP 问题
1.1 定义
已知:相机的内参和畸变系数;世界坐标系中,n 个空间点坐标,以及投影在像平面上的像素坐标
求解:相机在世界坐标系下的位姿 R 和 t,即 {W} 到 {C} 的变换矩阵 $;^w_cm{T} $,如下图:
世界坐标系中的 3d 空间点,与投影到像平面的 2d 像素点,两者之间的关系为:
$quad s egin{bmatrix} u \ v \ 1 end{bmatrix} = egin{bmatrix} f_x & 0 & c_x \ 0 & f_y & c_y \ 0 & 0 & 1 end{bmatrix} egin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \ r_{21} & r_{22} & r_{23} & t_2 \ r_{31} & r_{32} & r_{33} & t_3 end{bmatrix} egin{bmatrix} X_w \ Y_w \ Z_w\ 1 end{bmatrix} $
1.2 分类
根据给定空间点的数量,可将 PnP 问题分为两类:
第一类 3≤n≤5,选取的空间点较少,可通过联立方程组的方式求解,精度易受图像噪声影响,鲁棒性较差
第二类 n≥6,选取的空间点较多,可转化为求解超定方程的问题,一般侧重于鲁棒性和实时性的平衡
2 求解方法
2.1 DLT 法
2.1.1 转化为 Ax=0
令 $P = K;[R;\, t]$,$K$ 为相机内参矩阵,则 PnP 问题可简化为:已知 n 组 3d-2d 对应点,求解 $P_{3 imes4}$
DLT (Direct Linear Transformation,直接线性变换),便是直接利用这 n 组对应点,构建线性方程组来求解
$quad s egin{bmatrix} u \ v \ 1 end{bmatrix} = egin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \ p_{21} & p_{22} & p_{23} & p_{23} \ p_{31} & p_{32} & p_{33} & p_{33} end{bmatrix} egin{bmatrix} X_w \ Y_w \ Z_w\ 1 end{bmatrix} $
简化符号 $X_w, Y_w, Z_w$ 为 $X, Y, Z$,展开得:
$quad egin{equation} egin{cases} su= p_{11}X + p_{12}Y + p_{13}Z + p_{14}\ \sv=p_{21}X + p_{22}Y + p_{23}Z + p_{24} \ \s;=p_{31}X + p_{32}Y + p_{33}Z + p_{34} end{cases}end{equation} ;m{=>} ; egin{cases} Xp_{11} + Yp_{12} + Zp_{13} + p_{14} - uXp_{31} - uYp_{32} - uZp_{33} - up_{34} = 0 \ \ Xp_{21} + Yp_{22} + Zp_{23} + p_{24} - vXp_{31} - vYp_{32} - vZp_{33} - vp_{34} = 0 end{cases}$
未知数有 11 个 ($p_{34}$可约掉),则至少需要 6 组对应点,写成矩阵形式如下:
$quad egin{bmatrix} X_1&Y_1&Z_1&1 &0&0&0&0&-u_1X_1&-u_1Y_1&-u_1Z_1&-u_1 \ 0&0&0&0& X_1&Y_1&Z_1&1&-v_1X_1&-v_1Y_1&-v_1Z_1&-v_1 \ vdots &vdots&vdots&vdots&vdots&vdots&vdots&vdots&vdots&vdots&vdots&vdots \ vdots &vdots&vdots&vdots&vdots&vdots&vdots&vdots&vdots&vdots&vdots&vdots\ X_n&Y_n&Z_n&1 &0&0&0&0&-u_nX_n&-u_nY_1&-u_nZ_n&-u_n \ 0&0&0&0& X_n&Y_n&Z_n&1&-v_nX_n&-v_nY_n&-v_nZ_n&-v_nend{bmatrix} egin{bmatrix}p_{11}\p_{12}\p_{13}\p_{14}\ vdots\p_{32}\p_{33}\p_{34}end{bmatrix}=egin{bmatrix}0\ vdots\ vdots\0end{bmatrix}$
因此,求解 $P_{3 imes4}$ 便转化成了 $Ax=0$ 的问题
2.1.2 SVD 求 R t
给定相机内参矩阵,则有 $K egin{bmatrix} R & t end{bmatrix} = lambda egin{bmatrix} p_1 & p_2 &p_3&p_4 end{bmatrix}$
考虑 $lambda$ 符号无关,得 $lambda R = K^{-1}egin{bmatrix} p_1 & p_2&p_3 end{bmatrix}$
SVD 分解 $K^{-1}egin{bmatrix} p_1&p_2&p_3end{bmatrix}=m{U}egin{bmatrix}d_{11} && \ &d_{22}&\&&&d_{33}end{bmatrix} m{V^T}$
$quad=> lambda approx d_{11}$ 和 $egin{cases}m{R=UV^T} \ m{t=dfrac{K^{-1}p_4}{d_{11}}} end{cases}$
2.2 P3P 法
当 n=3 时,PnP 即为 P3P,它有 4 个可能的解,求解方法是 余弦定理 + 向量点积
2.2.1 余弦定理
根据投影几何的消隐点和消隐线,构建 3d-2d 之间的几何关系,如下:
根据余弦定理,则有
$egin{cases} d_1^2 + d_2^2 - 2d_1d_2cos heta_{12} = p_{12}^2 \ \ d_2^2 + d_3^2 - 2d_2d_3cos heta_{23} = p_{23}^2 \ \ d_3^2 + d_1^2 + 2d_3d_2cos heta_23 = p_{31}^2 end{cases}$
只有 $d_1,\, d_2,\,d_3$ 是未知数,求解方程组即可
其中,有个关键的隐含点:给定相机内参,以及 3d-2d 的投影关系,则消隐线之间的夹角 $ heta_{12}; heta_{23}; heta_{31}$ 是可计算得出的
2.2.2 向量点积
相机坐标系中,原点即为消隐点,原点到 3d-2d 的连线即为消隐线,如图所示:
如果知道 3d点 投影到像平面的 2d点,在相机坐标系中的坐标 $U_1,\,U_2,\,U_3$,则 $cos heta_{23}= dfrac {overrightarrow{OU_2}cdot overrightarrow{OU_3}} {||overrightarrow{OU_2}||;||overrightarrow{OU_3}||} $
具体到运算,可视为 世界坐标系 {W} 和 相机坐标系 {C} 重合,且 $Z = f$,则有
$quad egin{bmatrix} R & t end{bmatrix} = egin{bmatrix} 1 &0&0&0 \ 0&1&0&0 \ 0&0&1&0 end{bmatrix} =>$ $; s egin{bmatrix} u \ v \ 1 end{bmatrix} = egin{bmatrix} f_x & 0 & c_x \ 0 & f_y & c_y \ 0 & 0 & 1 end{bmatrix} egin{bmatrix} X_c \ Y_c \ Z_c end{bmatrix} $
$K^{-1}$ 可用增广矩阵求得,且 $Z_c = f$,则有
$quad egin{bmatrix} X_c \Y_c\f end{bmatrix} = s K^{-1}egin{bmatrix} u\v\1 end{bmatrix}$
记 $vec u = egin{bmatrix} X_c \ Y_c \ Z_c end{bmatrix}$,则 $cos heta_{12}=dfrac{(K^{-1}vec{u_1})^T (K^{-1}vec{u_2})}{||K^{-1}vec{u_1}||\,||K^{-1}vec{u_2}||}$,以此类推 $cos heta_{23}$ 和 $cos heta_{31}$
3 OpenCV 函数
OpenCV 中解 PnP 的方法有 9 种,目前实现了 7 种,还有 2 种未实现,对应论文如下:
- SOLVEPNP_P3P Complete Solution Classification for the Perspective-Three-Point Problem
- SOLVEPNP_AP3P An Efficient Algebraic Solution to the Perspective-Three-Point Problem
- SOLVEPNP_ITERATIVE 基于 L-M 最优化方法,求解重投影误差最小的位姿
- SOLVEPNP_EPNP EPnP: An Accurate O(n) Solution to the PnP Problem
- SOLVEPNP_SQPNP A Consistently Fast and Globally Optimal Solution to the Perspective-n-Point Problem
- SOLVEPNP_IPPE Infinitesimal Plane-based Pose Estimation 输入的 3D 点需要共面且 n ≥ 4
- SOLVEPNP_IPPE_SQUARE SOLVEPNP_IPPE 的一种特殊情况,要求输入 4 个共面点的坐标,并且按照特定的顺序排列
- SOLVEPNP_DLS (未实现) A Direct Least-Squares (DLS) Method for PnP 实际调用 SOLVEPNP_EPNP
- SOLVEPNP_UPLP (未实现) Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation 实际调用 SOLVEPNP_EPNP
3.1 solveP3P()
solveP3P() 的输入是 3 组 3d-2d 对应点,定义如下:
// P3P has up to 4 solutions, and the solutions are sorted by reprojection errors(lowest to highest). int solveP3P ( InputArray objectPoints, // object points, 3x3 1-channel or 1x3/3x1 3-channel. vector<Point3f> can be also passed InputArray imagePoints, // corresponding image points, 3x2 1-channel or 1x3/3x1 2-channel. vector<Point2f> can be also passed InputArray cameraMatrix, // camera intrinsic matrix InputArray distCoeffs, // distortion coefficients.If NULL/empty, the zero distortion coefficients are assumed. OutputArrayOfArrays rvecs, // rotation vectors OutputArrayOfArrays tvecs, // translation vectors int flags // solving method );
3.2 solvePnP() 和 solvePnPGeneric()
solvePnP() 实际上调用的是 solvePnPGeneric(),内部实现如下:
bool solvePnP(InputArray opoints, InputArray ipoints, InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, OutputArray tvec, bool useExtrinsicGuess, int flags) { CV_INSTRUMENT_REGION(); vector<Mat> rvecs, tvecs; int solutions = solvePnPGeneric(opoints, ipoints, cameraMatrix, distCoeffs, rvecs, tvecs, useExtrinsicGuess, (SolvePnPMethod)flags, rvec, tvec); if (solutions > 0) { int rdepth = rvec.empty() ? CV_64F : rvec.depth(); int tdepth = tvec.empty() ? CV_64F : tvec.depth(); rvecs[0].convertTo(rvec, rdepth); tvecs[0].convertTo(tvec, tdepth); } return solutions > 0; }
solvePnPGeneric() 除了求解相机位姿外,还可得到重投影误差,其定义如下:
bool solvePnPGeneric ( InputArray objectPoints, // object points, Nx3 1-channel or 1xN/Nx1 3-channel, N is the number of points. vector<Point3d> can be also passed InputArray imagePoints, // corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel, N is the number of points. vector<Point2d> can be also passed InputArray cameraMatrix, // camera intrinsic matrix InputArray distCoeffs, // distortion coefficients OutputArrayOfArrays rvec, // rotation vector OutputArrayOfArrays tvec, // translation vector bool useExtrinsicGuess = false, // used for SOLVEPNP_ITERATIVE. If true, use the provided rvec and tvec as initial approximations, and further optimize them. SolvePnPMethod flags = SOLVEPNP_ITERATIVE, // solving method InputArray rvec = noArray(), // initial rotation vector when using SOLVEPNP_ITERATIVE and useExtrinsicGuess is set to true InputArray tvec = noArray(), // initial translation vector when using SOLVEPNP_ITERATIVE and useExtrinsicGuess is set to true OutputArray reprojectionError = noArray() // optional vector of reprojection error, that is the RMS error );
3.3 solvePnPRansac()
solvePnP() 的一个缺点是鲁棒性不强,对异常点敏感,这在相机标定中问题不大,因为标定板的图案已知,并且特征提取较为稳定
然而,当相机拍摄实际物体时,因为特征难以稳定提取,会出现一些异常点,导致位姿估计的不准,因此,需要一种处理异常点的方法
RANSAC 便是一种高效剔除异常点的方法,对应 solvePnPRansac(),它是一个重载函数,共有 2 种参数形式,第 1 种形式如下:
bool solvePnPRansac ( InputArray objectPoints, // object points, Nx3 1-channel or 1xN/Nx1 3-channel, N is the number of points. vector<Point3d> can be also passed InputArray imagePoints, // corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel, N is the number of points. vector<Point2d> can be also passed InputArray cameraMatrix, // camera intrinsic matrix InputArray distCoeffs, // distortion coefficients OutputArray rvec, // rotation vector OutputArray tvec, // translation vector bool useExtrinsicGuess = false, // used for SOLVEPNP_ITERATIVE. If true, use the provided rvec and tvec as initial approximations, and further optimize them. int iterationsCount = 100, // number of iterations float reprojectionError = 8.0, // inlier threshold value. It is the maximum allowed distance between the observed and computed point projections to consider it an inlier double confidence = 0.99, // the probability that the algorithm produces a useful result OutputArray inliers = noArray(), // output vector that contains indices of inliers in objectPoints and imagePoints int flags = SOLVEPNP_ITERATIVE // solving method );
3.4 solvePnPRefineLM() 和 solvePnPRefineVVS()
OpenCV 中还有 2 个位姿细化函数:通过迭代不断减小重投影误差,从而求得最佳位姿,solvePnPRefineLM() 使用 L-M 算法,solvePnPRefineVVS() 则用虚拟视觉伺服 (Virtual Visual Servoing)
solvePnPRefineLM() 的定义如下:
void solvePnPRefineLM ( InputArray objectPoints, // object points, Nx3 1-channel or 1xN/Nx1 3-channel, N is the number of points InputArray imagePoints, // corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel InputArray cameraMatrix, // camera intrinsic matrix InputArray distCoeffs, // distortion coefficients InputOutputArray rvec, // input/output rotation vector InputOutputArray tvec, // input/output translation vector TermCriteria criteria = TermCriteria(TermCriteria::EPS+TermCriteria::COUNT, 20, FLT_EPSILON) // Criteria when to stop the LM iterative algorithm );
4 应用实例
4.1 位姿估计 (静态+标定板)
当手持标定板旋转不同角度时,利用相机内参 + solvePnP(),便可求出相机相对标定板的位姿
#include "opencv2/imgproc.hpp" #include "opencv2/highgui.hpp" #include "opencv2/calib3d.hpp" using namespace std; using namespace cv; Size kPatternSize = Size(9, 6); float kSquareSize = 0.025; // camera intrinsic parameters and distortion coefficient const Mat cameraMatrix = (Mat_<double>(3, 3) << 5.3591573396163199e+02, 0.0, 3.4228315473308373e+02, 0.0, 5.3591573396163199e+02, 2.3557082909788173e+02, 0.0, 0.0, 1.0); const Mat distCoeffs = (Mat_<double>(5, 1) << -2.6637260909660682e-01, -3.8588898922304653e-02, 1.7831947042852964e-03, -2.8122100441115472e-04, 2.3839153080878486e-01); int main() { // 1) read image Mat src = imread("left07.jpg"); if (src.empty()) return -1; // prepare for subpixel corner Mat src_gray; cvtColor(src, src_gray, COLOR_BGR2GRAY); // 2) find chessboard corners and subpixel refining vector<Point2f> corners; bool patternfound = findChessboardCorners(src, kPatternSize, corners); if (patternfound) { cornerSubPix(src_gray, corners, Size(11, 11), Size(-1, -1), TermCriteria(TermCriteria::EPS + TermCriteria::MAX_ITER, 30, 0.1)); } else { return -1; } // 3) object coordinates vector<Point3f> objectPoints; for (int i = 0; i < kPatternSize.height; i++) { for (int j = 0; j < kPatternSize.width; j++) { objectPoints.push_back(Point3f(float(j * kSquareSize), float(i * kSquareSize), 0)); } } // 4) Rotation and Translation vectors Mat rvec, tvec; solvePnP(objectPoints, corners, cameraMatrix, distCoeffs, rvec, tvec); // 5) project estimated pose on the image drawFrameAxes(src, cameraMatrix, distCoeffs, rvec, tvec, 2*kSquareSize); imshow("Pose estimation", src); waitKey(); }
当标定板旋转不同角度时,相机所对应的位姿如下:
4.2 位姿估计 (实时+任意物)
OpenCV 中有一个实时目标跟踪例程,位于 "opencvsamplescpp utorial_codecalib3d eal_time_pose_estimation" 中,实现步骤如下:
1) 读取目标的三维模型和网格 -> 2) 获取视频流 -> 3) ORB 特征检测 -> 4) 3d-2d 特征匹配 -> 5) 相机位姿估计 -> 6) 卡尔曼滤波
例程中设计了一个 PnPProblem 类来实现位姿估计,其中 2 个重要的函数 estimatePoseRANSAC() 和 backproject3DPoint() 定义如下:
class PnPProblem { public: explicit PnPProblem(const double param[]); // custom constructor virtual ~PnPProblem(); cv::Point2f backproject3DPoint(const cv::Point3f& point3d); void estimatePoseRANSAC(const std::vector<cv::Point3f>& list_points3d, const std::vector<cv::Point2f>& list_points2d, int flags, cv::Mat& inliers, int iterationsCount, float reprojectionError, double confidence); // ... } // Custom constructor given the intrinsic camera parameters PnPProblem::PnPProblem(const double params[]) { // intrinsic camera parameters _A_matrix = cv::Mat::zeros(3, 3, CV_64FC1); _A_matrix.at<double>(0, 0) = params[0]; // [ fx 0 cx ] _A_matrix.at<double>(1, 1) = params[1]; // [ 0 fy cy ] _A_matrix.at<double>(0, 2) = params[2]; // [ 0 0 1 ] _A_matrix.at<double>(1, 2) = params[3]; _A_matrix.at<double>(2, 2) = 1; // rotation matrix, translation matrix, rotation-translation matrix _R_matrix = cv::Mat::zeros(3, 3, CV_64FC1); _t_matrix = cv::Mat::zeros(3, 1, CV_64FC1); _P_matrix = cv::Mat::zeros(3, 4, CV_64FC1); } // Estimate the pose given a list of 2D/3D correspondences with RANSAC and the method to use void PnPProblem::estimatePoseRANSAC ( const std::vector<Point3f>& list_points3d, // list with model 3D coordinates const std::vector<Point2f>& list_points2d, // list with scene 2D coordinates int flags, Mat& inliers, int iterationsCount, // PnP method; inliers container float reprojectionError, float confidence) // RANSAC parameters { // distortion coefficients, rotation vector and translation vector Mat distCoeffs = Mat::zeros(4, 1, CV_64FC1); Mat rvec = Mat::zeros(3, 1, CV_64FC1); Mat tvec = Mat::zeros(3, 1, CV_64FC1); // no initial approximations bool useExtrinsicGuess = false; // PnP + RANSAC solvePnPRansac(list_points3d, list_points2d, _A_matrix, distCoeffs, rvec, tvec, useExtrinsicGuess, iterationsCount, reprojectionError, confidence, inliers, flags); // converts Rotation Vector to Matrix Rodrigues(rvec, _R_matrix); _t_matrix = tvec; // set translation matrix this->set_P_matrix(_R_matrix, _t_matrix); // set rotation-translation matrix } // Backproject a 3D point to 2D using the estimated pose parameters cv::Point2f PnPProblem::backproject3DPoint(const cv::Point3f& point3d) { // 3D point vector [x y z 1]' cv::Mat point3d_vec = cv::Mat(4, 1, CV_64FC1); point3d_vec.at<double>(0) = point3d.x; point3d_vec.at<double>(1) = point3d.y; point3d_vec.at<double>(2) = point3d.z; point3d_vec.at<double>(3) = 1; // 2D point vector [u v 1]' cv::Mat point2d_vec = cv::Mat(4, 1, CV_64FC1); point2d_vec = _A_matrix * _P_matrix * point3d_vec; // Normalization of [u v]' cv::Point2f point2d; point2d.x = (float)(point2d_vec.at<double>(0) / point2d_vec.at<double>(2)); point2d.y = (float)(point2d_vec.at<double>(1) / point2d_vec.at<double>(2)); return point2d; }
PnPProblem 类的调用如下:实例化 -> estimatePoseRansac() 估计位姿 -> backproject3DPoint() 画出位姿
// Intrinsic camera parameters: UVC WEBCAM double f = 55; // focal length in mm double sx = 22.3, sy = 14.9; // sensor size double width = 640, height = 480; // image size double params_WEBCAM[] = { width * f / sx, // fx height * f / sy, // fy width / 2, // cx height / 2 }; // cy // instantiate PnPProblem class PnPProblem pnp_detection(params_WEBCAM); // RANSAC parameters int iterCount = 500; // number of Ransac iterations. float reprojectionError = 2.0; // maximum allowed distance to consider it an inlier. float confidence = 0.95; // RANSAC successful confidence. // OpenCV requires solvePnPRANSAC to minimally have 4 set of points if (good_matches.size() >= 4) { // -- Step 3: Estimate the pose using RANSAC approach pnp_detection.estimatePoseRANSAC(list_points3d_model_match, list_points2d_scene_match, pnpMethod, inliers_idx, iterCount, reprojectionError, confidence); // ... .. } // ... ... float fp = 5; vector<Point2f> pose2d; pose2d.push_back(pnp_detect_est.backproject3DPoint(Point3f(0, 0, 0))); // axis center pose2d.push_back(pnp_detect_est.backproject3DPoint(Point3f(fp, 0, 0))); // axis x pose2d.push_back(pnp_detect_est.backproject3DPoint(Point3f(0, fp, 0))); // axis y pose2d.push_back(pnp_detect_est.backproject3DPoint(Point3f(0, 0, fp))); // axis z draw3DCoordinateAxes(frame_vis, pose2d); // draw axes // ... ...
实时目标跟踪的效果如下:
参考资料
OpenCV-Python Tutorials / Camera Calibration and 3D Reconstruction / Pose Estimation
OpenCV Tutorials / Camera calibration and 3D reconstruction (calib3d module) / Real time pose estimation of a textured object
Perspective-n-Point, Hyun Soo Park