zoukankan      html  css  js  c++  java
  • Binary Search Tree 二叉搜索树 C++

    Definition of Binary Search Tree:

    1.Every node in the left subtree must be less than the current node

    2.Every node in the right subtree must be greater than the current node


    Here the tree in Figure 2  is a binary search tree.

    Finding a data in a Binary Search Tree


    Look at the simple queue below

    When we search a number in the queue, we need average (1 + 2 + 3 + 4 + 5 + 6 + 7) / 7  =  4 comparisons  to find the number.

    When we put those numbers in a binary search tree, we only need average(1 + 2 + 2 + 3 + 3 + 3 + 3) / 7 = 2.42 comparisons to find the number. The Binary Search Tree 's search algorithm is roughly O(log2n) However this is the best-case .

    Figure 2


    Delete Node in a Binary Search Tree

    Because search and insert node in a Binary Search Tree is easy, So We skip it. Focus on how to delete node.

    To delete node P, there are three possbilities,(1) P is just a leaf, (2) P only has one subtree, (3) P has two subtrees.


    For Case (1), To delete 5 in Figure 4, just set its parent's left-child field to Zero, and delete the node P. To delete 3 in Figure 4, just set its parent's right-child field to Zero, and delete the node P. So We need to know node P is its parent's right child or left child. However,  If Node p is tree's root nood, just delete the root nood.


    For Case(2), To delete 6 in Figure 5,  We assume Node p have a parent node called PP, So we change PP's right child pointer to points P's only child. In the Figure 5, To delete 6, 4's right child became 7. To delete 2, 4's left child became 1. However, when the Node p is the root node, We set its only child to be the new root node.


    For Case(3). Look at case(2) in Figure 6, when We delete node 4, We replace this element with either the largest element in its left subtree or the smallest element in its right subtree. So it remains be a Binary Search Tree.  In our code below, we replace the element with the largest element in its left subtree. When the node P is the root node like in the case(2) in Figure 6, we set new element to be the root node.


    Customized Binary Search Tree Code

    #ifndef _BSTREE_
    #define _BSTREE_
    
    
    template<class T> class BSTree;
    
    
    template<class T>
    class Node{
    	friend BSTree<T>;
    public:
    	Node(){left = right = parent = 0;}
    private:
    	T data;
    	Node<T>* left,* right, *parent;
    };
    
    
    template<class T>
    class BSTree{
    
    private:
    	Node<T>* root;
        bool InsertWhenHaveRoot( const T& v, Node<T>* newNode );
    	void BeginToDelete( Node<T>* item ); 
    public:
    	BSTree(){root = 0;}
    	~BSTree();
       bool Search(const T& v);
       bool Insert(const T& v);
       bool Delete(const T& v);
       void Clear();
    
    };
    
    template<class T>
    BSTree<T>::~BSTree(){
    	while(root){
    		Delete(root->data);
    	}
    };
    
    
    template<class T>
    bool BSTree<T>::Search(const T& v){
        Node<T>* item = root;
    	while(item){
    		if(v > item->data){
    			item = item->right;
    		}else if(v < item->data){
    			item = item->left;
    		}else{ //when v == item->data, find the item
    			return true;
    		}
    	}
    	return false;
    }
    
    template<class T>
    bool BSTree<T>::Insert(const T& v){
    
    	Node<T>* newNode = new Node<T>;
    	newNode->data = v;
    	if(!root){ //if the tree is empty, the new node become the root.
    		root = newNode;
    		return true;
    	}else{
    		return InsertWhenHaveRoot(v, newNode);
    	}
    }
    
    template<class T>
    bool BSTree<T>::Delete(const T& v){
    	Node<T>* item = root;
    
    	while(item){
    		if(v > item->data){ //keep finding
    			item = item->right;
    		}else if(v < item->data){ //keep finding
    			item = item->left;
    		}else{ //begin to delete, because v == item->data
    		    BeginToDelete(item);
    			return true;
    		}
    	}
    	return false;
    }
    
    template<class T>
    void BSTree<T>::Clear(){
    	while(root){
    		Delete(root->data);
    	}
    }
    
    template<class T>
    bool BSTree<T>::InsertWhenHaveRoot( const T& v, Node<T>* newNode ) 
    {
    	Node<T>* item = root;
    	while(item){
    		if(v > item->data){ //keep finding or insert the new node to the right
    			if(item->right){
    				item = item->right;
    			}else{
    				item->right = newNode;
    				newNode->parent = item;
    				return true;
    			}
    
    		}else if(v < item->data){//keep finding or insert the new node to the left
    			if(item->left){
    				item = item->left;
    			}else{
    				item->left = newNode;
    				newNode->parent = item;
    				return true;
    			}
    		}else{//have duplicate data,failure insert
    			return false;
    		}
    	}
    }
    
    template<class T>
    void BSTree<T>::BeginToDelete( Node<T>* item ) 
    {
    
    	if(item->left && item->right){// it both have right and left child
    		//find max item in its left children
    		Node<T>* searchNode = item->left;
    		while(searchNode->right){
    			searchNode = searchNode->right;
    		}
    		searchNode->right = item->right;
    		if(item->parent){
    			if(item->parent->right == item){
    				item->parent->right = searchNode;
    			}else{
    				item->parent->left = searchNode;
    			}
    		}else{
    			root = searchNode;
    			root->parent = 0;
    		}
    		delete item;
    	}else{
    		//it have no child or only have one child
    
    		Node<T>* c = new Node<T>;
    		if(item->right){
    			c = item->right;
    		}else{
    			c = item->left;
    		}
    		if(item == root){
    			root = c;
    			if(root)root->parent = 0;
    		}else{
    			if(item->parent->right == item){
    				item->parent->right = c;
    			}else{
    				item->parent->left = c;
    			}
    		}
    		delete item;
    	}
        
    	
    }
    #endif
    
    
    

    Simply Test the Binary Search Tree

    // BSTree.cpp : Defines the entry point for the console application.
    //
    
    #include "stdafx.h"
    #include "BSTree1.h"
    #include <iostream>
    
    using namespace std;
    
    
    int _tmain(int argc, _TCHAR* argv[])
    {
    
    	BSTree<int> bsTree;
    
    	bsTree.Insert(4);
        bsTree.Insert(3);
    	bsTree.Insert(6);
    	bsTree.Insert(5);
    	bsTree.Insert(7);
    
    	cout << "Insert 7:" << boolalpha << bsTree.Insert(7) << endl;
    	cout << "Search 7:" << boolalpha << bsTree.Search(7) << endl;
        cout << "Search 8:" << boolalpha << bsTree.Search(8) << endl;
    	cout << "Delete ALl Elements" <<  endl;
    	bsTree.Clear();
    	cout << "Search 4:" <<  boolalpha << bsTree.Search(7) << endl;
    	
    	int i;
    	cin >> i;
    	return 0;
    }
    
    


    http://www.waitingfy.com/?p=468


  • 相关阅读:
    使用滤镜设置透明导致 IE 6/7/8/9 解析异常
    用事实证明cssText性能高
    字符串转成数字的多种方式
    IE6/7/8/9怪异模式和IE6标准模式中多余字符Bug
    将HTMLCollection/NodeList/伪数组转换成数组
    servlet下利用jsonlib
    JavaScript中同名标识符优先级
    JavaScript继承方式(3)
    设置HTML元素的透明度
    各浏览器中定位元素遮盖其它元素差异性
  • 原文地址:https://www.cnblogs.com/xinyuyuanm/p/2998604.html
Copyright © 2011-2022 走看看