zoukankan      html  css  js  c++  java
  • 高并发网络编程之epoll详解

    在linux 没有实现epoll事件驱动机制之前,我们一般选择用select或者poll等IO多路复用的方法来实现并发服务程序。在大数据、高并发、集群等一些名词唱得火热之年代,select和poll的用武之地越来越有限,风头已经被epoll占尽。

    本文便来介绍epoll的实现机制,并附带讲解一下select和poll。通过对比其不同的实现机制,真正理解为何epoll能实现高并发。

    select()和poll() IO多路复用模型

    select的缺点:

    1. 单个进程能够监视的文件描述符的数量存在最大限制,通常是1024,当然可以更改数量,但由于select采用轮询的方式扫描文件描述符,文件描述符数量越多,性能越差;(在linux内核头文件中,有这样的定义:#define __FD_SETSIZE    1024)
    2. 内核 / 用户空间内存拷贝问题,select需要复制大量的句柄数据结构,产生巨大的开销;
    3. select返回的是含有整个句柄的数组,应用程序需要遍历整个数组才能发现哪些句柄发生了事件;
    4. select的触发方式是水平触发,应用程序如果没有完成对一个已经就绪的文件描述符进行IO操作,那么之后每次select调用还是会将这些文件描述符通知进程。

    相比select模型,poll使用链表保存文件描述符,因此没有了监视文件数量的限制,但其他三个缺点依然存在。

    拿select模型为例,假设我们的服务器需要支持100万的并发连接,则在__FD_SETSIZE 为1024的情况下,则我们至少需要开辟1k个进程才能实现100万的并发连接。除了进程间上下文切换的时间消耗外,从内核/用户空间大量的无脑内存拷贝、数组轮询等,是系统难以承受的。因此,基于select模型的服务器程序,要达到10万级别的并发访问,是一个很难完成的任务。

    因此,该epoll上场了。

    epoll IO多路复用模型实现机制

    由于epoll的实现机制与select/poll机制完全不同,上面所说的 select的缺点在epoll上不复存在。

    设想一下如下场景:有100万个客户端同时与一个服务器进程保持着TCP连接。而每一时刻,通常只有几百上千个TCP连接是活跃的(事实上大部分场景都是这种情况)。如何实现这样的高并发?

    在select/poll时代,服务器进程每次都把这100万个连接告诉操作系统(从用户态复制句柄数据结构到内核态),让操作系统内核去查询这些套接字上是否有事件发生,轮询完后,再将句柄数据复制到用户态,让服务器应用程序轮询处理已发生的网络事件,这一过程资源消耗较大,因此,select/poll一般只能处理几千的并发连接。

    epoll的设计和实现与select完全不同。epoll通过在Linux内核中申请一个简易的文件系统(文件系统一般用什么数据结构实现?B+树)。把原先的select/poll调用分成了3个部分:

    1)调用epoll_create()建立一个epoll对象(在epoll文件系统中为这个句柄对象分配资源)

    2)调用epoll_ctl向epoll对象中添加这100万个连接的套接字

    3)调用epoll_wait收集发生的事件的连接

    如此一来,要实现上面说是的场景,只需要在进程启动时建立一个epoll对象,然后在需要的时候向这个epoll对象中添加或者删除连接。同时,epoll_wait的效率也非常高,因为调用epoll_wait时,并没有一股脑的向操作系统复制这100万个连接的句柄数据,内核也不需要去遍历全部的连接。

    下面来看看Linux内核具体的epoll机制实现思路。

    当某一进程调用epoll_create方法时,Linux内核会创建一个eventpoll结构体,这个结构体中有两个成员与epoll的使用方式密切相关。eventpoll结构体如下所示:

    [cpp] view plain copy
     
    1. struct eventpoll{  
    2.     ....  
    3.     /*红黑树的根节点,这颗树中存储着所有添加到epoll中的需要监控的事件*/  
    4.     struct rb_root  rbr;  
    5.     /*双链表中则存放着将要通过epoll_wait返回给用户的满足条件的事件*/  
    6.     struct list_head rdlist;  
    7.     ....  
    8. };  

    每一个epoll对象都有一个独立的eventpoll结构体,用于存放通过epoll_ctl方法向epoll对象中添加进来的事件。这些事件都会挂载在红黑树中,如此,重复添加的事件就可以通过红黑树而高效的识别出来(红黑树的插入时间效率是lgn,其中n为树的高度)。

    而所有添加到epoll中的事件都会与设备(网卡)驱动程序建立回调关系,也就是说,当相应的事件发生时会调用这个回调方法。这个回调方法在内核中叫ep_poll_callback,它会将发生的事件添加到rdlist双链表中。

    在epoll中,对于每一个事件,都会建立一个epitem结构体,如下所示:

    [cpp] view plain copy
     
    1. struct epitem{  
    2.     struct rb_node  rbn;//红黑树节点  
    3.     struct list_head    rdllink;//双向链表节点  
    4.     struct epoll_filefd  ffd;  //事件句柄信息  
    5.     struct eventpoll *ep;    //指向其所属的eventpoll对象  
    6.     struct epoll_event event; //期待发生的事件类型  
    7. }  

    当调用epoll_wait检查是否有事件发生时,只需要检查eventpoll对象中的rdlist双链表中是否有epitem元素即可。如果rdlist不为空,则把发生的事件复制到用户态,同时将事件数量返回给用户。

    epoll.jpg

    epoll数据结构示意图

    从上面的讲解可知:通过红黑树和双链表数据结构,并结合回调机制,造就了epoll的高效。

    OK,讲解完了Epoll的机理,我们便能很容易掌握epoll的用法了。一句话描述就是:三步曲。

    第一步:epoll_create()系统调用。此调用返回一个句柄,之后所有的使用都依靠这个句柄来标识。

    第二步:epoll_ctl()系统调用。通过此调用向epoll对象中添加、删除、修改感兴趣的事件,返回0标识成功,返回-1表示失败。

    第三部:epoll_wait()系统调用。通过此调用收集收集在epoll监控中已经发生的事件。

    最后,附上一个epoll编程实例。(作者为sparkliang)

    [cpp] view plain copy
     
    1. //     
    2. // a simple echo server using epoll in linux    
    3. //     
    4. // 2009-11-05    
    5. // 2013-03-22:修改了几个问题,1是/n格式问题,2是去掉了原代码不小心加上的ET模式;  
    6. // 本来只是简单的示意程序,决定还是加上 recv/send时的buffer偏移  
    7. // by sparkling    
    8. //     
    9. #include <sys/socket.h>    
    10. #include <sys/epoll.h>    
    11. #include <netinet/in.h>    
    12. #include <arpa/inet.h>    
    13. #include <fcntl.h>    
    14. #include <unistd.h>    
    15. #include <stdio.h>    
    16. #include <errno.h>    
    17. #include <iostream>    
    18. using namespace std;    
    19. #define MAX_EVENTS 500    
    20. struct myevent_s    
    21. {    
    22.     int fd;    
    23.     void (*call_back)(int fd, int events, void *arg);    
    24.     int events;    
    25.     void *arg;    
    26.     int status; // 1: in epoll wait list, 0 not in    
    27.     char buff[128]; // recv data buffer    
    28.     int len, s_offset;    
    29.     long last_active; // last active time    
    30. };    
    31. // set event    
    32. void EventSet(myevent_s *ev, int fd, void (*call_back)(int, int, void*), void *arg)    
    33. {    
    34.     ev->fd = fd;    
    35.     ev->call_back = call_back;    
    36.     ev->events = 0;    
    37.     ev->arg = arg;    
    38.     ev->status = 0;  
    39.     bzero(ev->buff, sizeof(ev->buff));  
    40.     ev->s_offset = 0;    
    41.     ev->len = 0;  
    42.     ev->last_active = time(NULL);    
    43. }    
    44. // add/mod an event to epoll    
    45. void EventAdd(int epollFd, int events, myevent_s *ev)    
    46. {    
    47.     struct epoll_event epv = {0, {0}};    
    48.     int op;    
    49.     epv.data.ptr = ev;    
    50.     epv.events = ev->events = events;    
    51.     if(ev->status == 1){    
    52.         op = EPOLL_CTL_MOD;    
    53.     }    
    54.     else{    
    55.         op = EPOLL_CTL_ADD;    
    56.         ev->status = 1;    
    57.     }    
    58.     if(epoll_ctl(epollFd, op, ev->fd, &epv) < 0)    
    59.         printf("Event Add failed[fd=%d], evnets[%d] ", ev->fd, events);    
    60.     else    
    61.         printf("Event Add OK[fd=%d], op=%d, evnets[%0X] ", ev->fd, op, events);    
    62. }    
    63. // delete an event from epoll    
    64. void EventDel(int epollFd, myevent_s *ev)    
    65. {    
    66.     struct epoll_event epv = {0, {0}};    
    67.     if(ev->status != 1) return;    
    68.     epv.data.ptr = ev;    
    69.     ev->status = 0;  
    70.     epoll_ctl(epollFd, EPOLL_CTL_DEL, ev->fd, &epv);    
    71. }    
    72. int g_epollFd;    
    73. myevent_s g_Events[MAX_EVENTS+1]; // g_Events[MAX_EVENTS] is used by listen fd    
    74. void RecvData(int fd, int events, void *arg);    
    75. void SendData(int fd, int events, void *arg);    
    76. // accept new connections from clients    
    77. void AcceptConn(int fd, int events, void *arg)    
    78. {    
    79.     struct sockaddr_in sin;    
    80.     socklen_t len = sizeof(struct sockaddr_in);    
    81.     int nfd, i;    
    82.     // accept    
    83.     if((nfd = accept(fd, (struct sockaddr*)&sin, &len)) == -1)    
    84.     {    
    85.         if(errno != EAGAIN && errno != EINTR)    
    86.         {    
    87.         }  
    88.         printf("%s: accept, %d", __func__, errno);    
    89.         return;    
    90.     }    
    91.     do    
    92.     {    
    93.         for(i = 0; i < MAX_EVENTS; i++)    
    94.         {    
    95.             if(g_Events[i].status == 0)    
    96.             {    
    97.                 break;    
    98.             }    
    99.         }    
    100.         if(i == MAX_EVENTS)    
    101.         {    
    102.             printf("%s:max connection limit[%d].", __func__, MAX_EVENTS);    
    103.             break;    
    104.         }    
    105.         // set nonblocking  
    106.         int iret = 0;  
    107.         if((iret = fcntl(nfd, F_SETFL, O_NONBLOCK)) < 0)  
    108.         {  
    109.             printf("%s: fcntl nonblocking failed:%d", __func__, iret);  
    110.             break;  
    111.         }  
    112.         // add a read event for receive data    
    113.         EventSet(&g_Events[i], nfd, RecvData, &g_Events[i]);    
    114.         EventAdd(g_epollFd, EPOLLIN, &g_Events[i]);    
    115.     }while(0);    
    116.     printf("new conn[%s:%d][time:%d], pos[%d] ", inet_ntoa(sin.sin_addr),  
    117.             ntohs(sin.sin_port), g_Events[i].last_active, i);    
    118. }    
    119. // receive data    
    120. void RecvData(int fd, int events, void *arg)    
    121. {    
    122.     struct myevent_s *ev = (struct myevent_s*)arg;    
    123.     int len;    
    124.     // receive data  
    125.     len = recv(fd, ev->buff+ev->len, sizeof(ev->buff)-1-ev->len, 0);      
    126.     EventDel(g_epollFd, ev);  
    127.     if(len > 0)  
    128.     {  
    129.         ev->len += len;  
    130.         ev->buff[len] = '';    
    131.         printf("C[%d]:%s ", fd, ev->buff);    
    132.         // change to send event    
    133.         EventSet(ev, fd, SendData, ev);    
    134.         EventAdd(g_epollFd, EPOLLOUT, ev);    
    135.     }    
    136.     else if(len == 0)    
    137.     {    
    138.         close(ev->fd);    
    139.         printf("[fd=%d] pos[%d], closed gracefully. ", fd, ev-g_Events);    
    140.     }    
    141.     else    
    142.     {    
    143.         close(ev->fd);    
    144.         printf("recv[fd=%d] error[%d]:%s ", fd, errno, strerror(errno));    
    145.     }    
    146. }    
    147. // send data    
    148. void SendData(int fd, int events, void *arg)    
    149. {    
    150.     struct myevent_s *ev = (struct myevent_s*)arg;    
    151.     int len;    
    152.     // send data    
    153.     len = send(fd, ev->buff + ev->s_offset, ev->len - ev->s_offset, 0);  
    154.     if(len > 0)    
    155.     {  
    156.         printf("send[fd=%d], [%d<->%d]%s ", fd, len, ev->len, ev->buff);  
    157.         ev->s_offset += len;  
    158.         if(ev->s_offset == ev->len)  
    159.         {  
    160.             // change to receive event  
    161.             EventDel(g_epollFd, ev);    
    162.             EventSet(ev, fd, RecvData, ev);    
    163.             EventAdd(g_epollFd, EPOLLIN, ev);    
    164.         }  
    165.     }    
    166.     else    
    167.     {    
    168.         close(ev->fd);    
    169.         EventDel(g_epollFd, ev);    
    170.         printf("send[fd=%d] error[%d] ", fd, errno);    
    171.     }    
    172. }    
    173. void InitListenSocket(int epollFd, short port)    
    174. {    
    175.     int listenFd = socket(AF_INET, SOCK_STREAM, 0);    
    176.     fcntl(listenFd, F_SETFL, O_NONBLOCK); // set non-blocking    
    177.     printf("server listen fd=%d ", listenFd);    
    178.     EventSet(&g_Events[MAX_EVENTS], listenFd, AcceptConn, &g_Events[MAX_EVENTS]);    
    179.     // add listen socket    
    180.     EventAdd(epollFd, EPOLLIN, &g_Events[MAX_EVENTS]);    
    181.     // bind & listen    
    182.     sockaddr_in sin;    
    183.     bzero(&sin, sizeof(sin));    
    184.     sin.sin_family = AF_INET;    
    185.     sin.sin_addr.s_addr = INADDR_ANY;    
    186.     sin.sin_port = htons(port);    
    187.     bind(listenFd, (const sockaddr*)&sin, sizeof(sin));    
    188.     listen(listenFd, 5);    
    189. }    
    190. int main(int argc, char **argv)    
    191. {    
    192.     unsigned short port = 12345; // default port    
    193.     if(argc == 2){    
    194.         port = atoi(argv[1]);    
    195.     }    
    196.     // create epoll    
    197.     g_epollFd = epoll_create(MAX_EVENTS);    
    198.     if(g_epollFd <= 0) printf("create epoll failed.%d ", g_epollFd);    
    199.     // create & bind listen socket, and add to epoll, set non-blocking    
    200.     InitListenSocket(g_epollFd, port);    
    201.     // event loop    
    202.     struct epoll_event events[MAX_EVENTS];    
    203.     printf("server running:port[%d] ", port);    
    204.     int checkPos = 0;    
    205.     while(1){    
    206.         // a simple timeout check here, every time 100, better to use a mini-heap, and add timer event    
    207.         long now = time(NULL);    
    208.         for(int i = 0; i < 100; i++, checkPos++) // doesn't check listen fd    
    209.         {    
    210.             if(checkPos == MAX_EVENTS) checkPos = 0; // recycle    
    211.             if(g_Events[checkPos].status != 1) continue;    
    212.             long duration = now - g_Events[checkPos].last_active;    
    213.             if(duration >= 60) // 60s timeout    
    214.             {    
    215.                 close(g_Events[checkPos].fd);    
    216.                 printf("[fd=%d] timeout[%d--%d]. ", g_Events[checkPos].fd, g_Events[checkPos].last_active, now);    
    217.                 EventDel(g_epollFd, &g_Events[checkPos]);    
    218.             }    
    219.         }    
    220.         // wait for events to happen    
    221.         int fds = epoll_wait(g_epollFd, events, MAX_EVENTS, 1000);    
    222.         if(fds < 0){    
    223.             printf("epoll_wait error, exit ");    
    224.             break;    
    225.         }    
    226.         for(int i = 0; i < fds; i++){    
    227.             myevent_s *ev = (struct myevent_s*)events[i].data.ptr;    
    228.             if((events[i].events&EPOLLIN)&&(ev->events&EPOLLIN)) // read event    
    229.             {    
    230.                 ev->call_back(ev->fd, events[i].events, ev->arg);    
    231.             }    
    232.             if((events[i].events&EPOLLOUT)&&(ev->events&EPOLLOUT)) // write event    
    233.             {    
    234.                 ev->call_back(ev->fd, events[i].events, ev->arg);    
    235.             }    
    236.         }    
    237.     }    
    238.     // free resource    
    239.     return 0;    
    240. }
    241.  

    参考链接:https://blog.csdn.net/shenya1314/article/details/73691088

  • 相关阅读:
    Linux shell 学习总结
    linux shell 比较总结
    NSURL基本操作 HA
    Mac node.js install HA
    nodejs学习资料收集 HA
    xcode技巧 HA
    google web app/enxtions 学习资料收集 HA
    Failed to upload *.app on Device 可能的解决方法 HA
    iphone开发常见问题小集2 HA
    cocos2d收集 HA
  • 原文地址:https://www.cnblogs.com/xiohao/p/9054281.html
Copyright © 2011-2022 走看看