zoukankan      html  css  js  c++  java
  • hdu 1104 数论+bfs

    Remainder

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 2122    Accepted Submission(s): 449

    Problem Description
    Coco is a clever boy, who is good at mathematics. However, he is puzzled by a difficult mathematics problem. The problem is: Given three integers N, K and M, N may adds (‘+’) M, subtract (‘-‘) M, multiples (‘*’) M or modulus (‘%’) M (The definition of ‘%’ is given below), and the result will be restored in N. Continue the process above, can you make a situation that “[(the initial value of N) + 1] % K” is equal to “(the current value of N) % K”? If you can, find the minimum steps and what you should do in each step. Please help poor Coco to solve this problem. 
    You should know that if a = b * q + r (q > 0 and 0 <= r < q), then we have a % q = r.
     
    Input
    There are multiple cases. Each case contains three integers N, K and M (-1000 <= N <= 1000, 1 < K <= 1000, 0 < M <= 1000) in a single line.
    The input is terminated with three 0s. This test case is not to be processed.
     
    Output
    For each case, if there is no solution, just print 0. Otherwise, on the first line of the output print the minimum number of steps to make “[(the initial value of N) + 1] % K” is equal to “(the final value of N) % K”. The second line print the operations to do in each step, which consist of ‘+’, ‘-‘, ‘*’ and ‘%’. If there are more than one solution, print the minimum one. (Here we define ‘+’ < ‘-‘ < ‘*’ < ‘%’. And if A = a1a2...ak and B = b1b2...bk are both solutions, we say A < B, if and only if there exists a P such that for i = 1, ..., P-1, ai = bi, and for i = P, ai < bi)
     
    Sample Input
    2 2 2 -1 12 10 0 0 0
     
    Sample Output
    0 2 *+
     
    /*
    其他没什么好说的,数字太大需要%(k*m),这个可以证明就等于对n进行+、-m操作
    不影响结果,属于正常操作
    */ #include<iostream> #include<queue> #include<string> using namespace std; bool vis[1000010]; struct point { int val; int step; string s; }p,t; void bfs(int n,int k,int m) { memset(vis,false,sizeof(vis)); queue<point> q; int s=((n+1)%k+k)%k; t.val=n; t.step=0; t.s=""; vis[(n%k+k)%k]=true; q.push(t); while(!q.empty()) { t=q.front(); q.pop(); if(s==(t.val%k+k)%k) { cout<<t.step<<endl; cout<<t.s<<endl; return ; } for(int i=0;i<4;i++) { p=t; p.step++; if(i==0) { p.val=(t.val+m)%(k*m); p.s+='+'; } else if(i==1) { p.val=(t.val-m)%(k*m); p.s+='-'; } else if(i==2) { p.val=(t.val*m)%(k*m); p.s+='*'; } else if(i==3) { p.val=(t.val%m+m)%m%(k*m); p.s+='%'; } if(!vis[(p.val%k+k)%k]) { q.push(p); vis[(p.val%k+k)%k]=true; } } } cout<<0<<endl; } int main() { int n,m,k; while(cin>>n>>k>>m,k || m || n) bfs(n,k,m); return 0; }
  • 相关阅读:
    【设计模式】- 责任链篇
    【工具】
    【日常摘要】- 生成随机的姓名或手机号篇
    排序算法的时空复杂度、稳定性分析
    链表插入排序、链表归并排序
    图的存储结构
    二叉平衡树的插入和删除操作
    二叉排序树的查找、插入和删除
    哈希表
    堆的插入、删除和建立操作,堆排序
  • 原文地址:https://www.cnblogs.com/xiong-/p/3208275.html
Copyright © 2011-2022 走看看