zoukankan      html  css  js  c++  java
  • poj 2115 二元一次不定方程

    C Looooops
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 14765   Accepted: 3719

    Description

    A Compiler Mystery: We are given a C-language style for loop of type 
    for (variable = A; variable != B; variable += C)
       statement;
    I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k. 

    Input

    The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C < 2k) are the parameters of the loop. 
    The input is finished by a line containing four zeros. 

    Output

    The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate. 

    Sample Input

    3 3 2 16
    3 7 2 16
    7 3 2 16
    3 4 2 16
    0 0 0 0

    题目大意:计算循环的次数,有a+ct=b(mod 2^k),变换下得到二元一次不定方程:ct+p*2^k=b-a;
    用B=1<<k Wrong answer
    正确的 B=pow(2,k+0.0);
    AC代码:
    #include<iostream>
    #include<cstdio>
    #include<cmath>
    using namespace std;
    
    __int64 a,b,c,A,B,C,x,y,d,t,k;
    
    __int64 Extended_Euclid(__int64 a,__int64 b,__int64 &x,__int64 &y)
    {
        __int64 d,t;
        if(b==0)
        {
            x=1;y=0;
            return a;
        }
        d=Extended_Euclid(b,a%b,x,y);
        t=x;
        x=y;
        y=t-a/b*y;
        return d;
    }
    
    int main()
    {
        while(scanf("%I64d %I64d %I64d %d",&a,&b,&c,&k),a+b+c+k)
        {
            if (a==b) {cout<<0<<endl; continue;}
            else if (c==0) {cout<<"FOREVER"<<endl; continue;}
            A=c;
            C=b-a;
            B=pow(2,k+0.0);    
            d=Extended_Euclid(A,B,x,y);
            if(C%d)
                printf("FOREVER
    ");
            else 
            {
                t=B/d;
                x=x*C/d;
                x=(x%t+t)%t;
                printf("%I64d
    ",x);
            }
        }
        return 0;
    }
  • 相关阅读:
    [LeetCode]603. 连续空余座位(Mysql、自连接)
    [LeetCode]671. 二叉树中第二小的节点(递归)
    [LeetCode] 203. 移除链表元素(链表基本操作-删除)、876. 链表的中间结点(链表基本操作-找中间结点)
    [LeetCode]26. 删除排序数组中的重复项(数组,双指针)
    C# 把引用的dll嵌入到exe文件中
    iptables规则表
    [转载]EF Code First 学习笔记:约定配置
    使用itunes同步ios时丢失照片恢复
    USB硬件远程共享解决iphone已停用
    C# 非独占延时函数 非Sleep
  • 原文地址:https://www.cnblogs.com/xiong-/p/3213755.html
Copyright © 2011-2022 走看看