zoukankan      html  css  js  c++  java
  • poj 2115 二元一次不定方程

    C Looooops
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 14765   Accepted: 3719

    Description

    A Compiler Mystery: We are given a C-language style for loop of type 
    for (variable = A; variable != B; variable += C)
       statement;
    I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k. 

    Input

    The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C < 2k) are the parameters of the loop. 
    The input is finished by a line containing four zeros. 

    Output

    The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate. 

    Sample Input

    3 3 2 16
    3 7 2 16
    7 3 2 16
    3 4 2 16
    0 0 0 0

    题目大意:计算循环的次数,有a+ct=b(mod 2^k),变换下得到二元一次不定方程:ct+p*2^k=b-a;
    用B=1<<k Wrong answer
    正确的 B=pow(2,k+0.0);
    AC代码:
    #include<iostream>
    #include<cstdio>
    #include<cmath>
    using namespace std;
    
    __int64 a,b,c,A,B,C,x,y,d,t,k;
    
    __int64 Extended_Euclid(__int64 a,__int64 b,__int64 &x,__int64 &y)
    {
        __int64 d,t;
        if(b==0)
        {
            x=1;y=0;
            return a;
        }
        d=Extended_Euclid(b,a%b,x,y);
        t=x;
        x=y;
        y=t-a/b*y;
        return d;
    }
    
    int main()
    {
        while(scanf("%I64d %I64d %I64d %d",&a,&b,&c,&k),a+b+c+k)
        {
            if (a==b) {cout<<0<<endl; continue;}
            else if (c==0) {cout<<"FOREVER"<<endl; continue;}
            A=c;
            C=b-a;
            B=pow(2,k+0.0);    
            d=Extended_Euclid(A,B,x,y);
            if(C%d)
                printf("FOREVER
    ");
            else 
            {
                t=B/d;
                x=x*C/d;
                x=(x%t+t)%t;
                printf("%I64d
    ",x);
            }
        }
        return 0;
    }
  • 相关阅读:
    google jQuery 1.4.2引用文件,jQuery 1.4.2 引用地址,jQuery引用地址
    html input checkbox js,jQuery
    HTML <fieldset> 标签
    ul 水平,行内块放置,取消点点
    C# Xml 操作
    DropDownList 下拉菜单控件
    jQuery,js : missing)after argument list
    PHP会员权限设计
    主流ETL工具选型
    windows XP下MySQL Cluster集群安装配置 .
  • 原文地址:https://www.cnblogs.com/xiong-/p/3213755.html
Copyright © 2011-2022 走看看