Good Numbers
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 603 Accepted Submission(s): 221
Problem Description
If we sum up every digit of a number and the result can be exactly divided by 10, we say this number is a good number. You are required to count the number of good numbers in the range from A to B, inclusive.
Input
The first line has a number T (T <= 10000) , indicating the number of test cases. Each test case comes with a single line with two numbers A and B (0 <= A <= B <= 1018).
Output
For test case X, output "Case #X: " first, then output the number of good numbers in a single line.
Sample Input
2
1 10
1 20
Sample Output
Case #1: 0
Case #2: 1
Hint
The answer maybe very large, we recommend you to use long long instead of int.#include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<string> #include<algorithm> using namespace std; const int MAX=22; __int64 dp[MAX][10];//分别代表长度为i位数和mod 10为j的个数 int digit[MAX]; void digit_dp() {//计算每长度为i为的数mod 10 == 0的个数 dp[0][0]=1; for(int i=1;i<MAX;++i) { for(int j=0;j<10;++j) { for(int k=0;k<10;++k) { dp[i][j]+=dp[i-1][(j-k+10)%10]; } } } } __int64 calculate(__int64 n) { int size=0,last=0; __int64 sum=0; while(n) digit[++size]=n%10,n/=10; for(int i=size;i>=1;--i) { for(int j=0;j<digit[i];++j) { sum+=dp[i-1][((0-j-last)%10+10)%10]; } last=(last+digit[i])%10; } return sum; } int main() { digit_dp(); int t,num=0; __int64 a,b; scanf("%d",&t); while(t--) { scanf("%I64d%I64d",&a,&b); printf("Case #%d: %I64d ",++num,calculate(b+1)-calculate(a)); } return 0; }