zoukankan      html  css  js  c++  java
  • uva 11178二维几何(点与直线、点积叉积)

    Problem D Morley’s Theorem Input: Standard Input

    Output: Standard Output

     Morley’s theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-sectors of angles A, B and C has intersected and created an equilateral triangle DEF.

    Of course the theorem has various generalizations, in particular if all of the tri-sectors are intersected one obtains four other equilateral triangles. But in the original theorem only tri-sectors nearest to BC are allowed to intersect to get point D, tri-sectors nearest to CA are allowed to intersect point E and tri-sectors nearest to AB are intersected to get point F. Trisector like BD and CE are not allowed to intersect. So ultimately we get only one equilateral triangle DEF. Now your task is to find the Cartesian coordinates of D, E and F given the coordinates of A, B, and C.

    Input

    First line of the input file contains an integer N (0<N<5001) which denotes the number of test cases to follow. Each of the next lines contain six integers . This six integers actually indicates that the Cartesian coordinates of point A, B and C are  respectively. You can assume that the area of triangle ABC is not equal to zero,  and the points A, B and C are in counter clockwise order.

     

    Output

    For each line of input you should produce one line of output. This line contains six floating point numbers  separated by a single space. These six floating-point actually means that the Cartesian coordinates of D, E and F are  respectively. Errors less than   will be accepted.

    Sample Input   Output for Sample Input

    2
    1 1 2 2 1 2
    0 0 100 0 50 50

    1.316987 1.816987 1.183013 1.683013 1.366025 1.633975

    56.698730 25.000000 43.301270 25.000000 50.000000 13.397460

     

    题目大意:给一个三角形的三个顶点求1/3角平分线的交点。

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    using namespace std;
    
    struct Point
    {
        double x,y;
        Point(double x=0,double y=0):x(x),y(y) {}
    };
    
    typedef Point Vector;
    Vector operator +(Vector A,Vector B){return Vector(A.x+B.x,A.y+B.y);}
    Vector operator -(Vector A,Vector B){return Vector(A.x-B.x,A.y-B.y);}
    Vector operator *(Vector A,double p){return Vector(A.x*p,A.y*p);}
    Vector operator /(Vector A,double p){return Vector(A.x/p,A.y/p);}
    bool operator < (const Point &a,const Point &b)
    {
        return a.x<b.x||(a.x==b.x&&a.y<b.y);
    }
    const double eps=1e-10;
    
    int dcmp(double x)
    {
        if(fabs(x)<eps) return 0;
        else return x<0?-1:1;
    }
    
    bool operator == (const Point &a,const Point &b){
        return (dcmp(a.x-b.x)==0 && dcmp(a.y-b.y)==0);
    }
    
    double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;}//点积
    double Length(Vector A){return sqrt(Dot(A,A));}//向量长度
    //两向量的夹角
    double Angle(Vector A,Vector B){return acos(Dot(A,B)/Length(A)/Length(B));}
    
    double Cross(Vector A,Vector B){ return A.x*B.y-A.y*B.x;}//叉积
    
    Vector Rotate(Vector A,double rad)//向量旋转
    {
        return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
    }
    
    Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)//两直线的交点
    {
        Vector u=P-Q;
        double t=Cross(w,u)/Cross(v,w);
        return P+v*t;
    }
    
    Point read_point()
    {
        Point A;
        scanf("%lf %lf",&A.x,&A.y);
        return A;
    }
    
    
    Point getpoint(Point A,Point B,Point C)
    {
        Vector v1,v2;
        double a1,a2;
        v1=C-B;
        v2=B-C;
        a1=Angle(A-B,C-B)/3;
        a2=Angle(A-C,B-C)/3;
        v1=Rotate(v1,a1);
        v2=Rotate(v2,-a2);
        return GetLineIntersection(B,v1,C,v2);
    }
    
    int main()
    {
        int T;
        Point A,B,C,D,E,F;
        scanf("%d",&T);
        while(T--)
        {
            A=read_point();
            B=read_point();
            C=read_point();
            D=getpoint(A,B,C);
            E=getpoint(B,C,A);
            F=getpoint(C,A,B);
            printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf
    ",D.x,D.y,E.x,E.y,F.x,F.y);
        }
        return 0;
    }

  • 相关阅读:
    《网络攻防第四周作业》
    《网络攻防第三周作业》20179313
    15.javaweb XML详解教程
    小程序新功能:直接进入内嵌网页!
    为什么要创业?听听扎克伯格怎么说
    面试官:“还有什么问题问我吗?”我...
    双十一为何规则复杂,套路多多
    如何设置电信光猫?图解手把手教你(超级详细)
    14.javaweb AJAX技术详解
    android黑科技系列——自动注入代码工具icodetools
  • 原文地址:https://www.cnblogs.com/xiong-/p/3381277.html
Copyright © 2011-2022 走看看