zoukankan      html  css  js  c++  java
  • uva 11178二维几何(点与直线、点积叉积)

    Problem D Morley’s Theorem Input: Standard Input

    Output: Standard Output

     Morley’s theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-sectors of angles A, B and C has intersected and created an equilateral triangle DEF.

    Of course the theorem has various generalizations, in particular if all of the tri-sectors are intersected one obtains four other equilateral triangles. But in the original theorem only tri-sectors nearest to BC are allowed to intersect to get point D, tri-sectors nearest to CA are allowed to intersect point E and tri-sectors nearest to AB are intersected to get point F. Trisector like BD and CE are not allowed to intersect. So ultimately we get only one equilateral triangle DEF. Now your task is to find the Cartesian coordinates of D, E and F given the coordinates of A, B, and C.

    Input

    First line of the input file contains an integer N (0<N<5001) which denotes the number of test cases to follow. Each of the next lines contain six integers . This six integers actually indicates that the Cartesian coordinates of point A, B and C are  respectively. You can assume that the area of triangle ABC is not equal to zero,  and the points A, B and C are in counter clockwise order.

     

    Output

    For each line of input you should produce one line of output. This line contains six floating point numbers  separated by a single space. These six floating-point actually means that the Cartesian coordinates of D, E and F are  respectively. Errors less than   will be accepted.

    Sample Input   Output for Sample Input

    2
    1 1 2 2 1 2
    0 0 100 0 50 50

    1.316987 1.816987 1.183013 1.683013 1.366025 1.633975

    56.698730 25.000000 43.301270 25.000000 50.000000 13.397460

     

    题目大意:给一个三角形的三个顶点求1/3角平分线的交点。

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    using namespace std;
    
    struct Point
    {
        double x,y;
        Point(double x=0,double y=0):x(x),y(y) {}
    };
    
    typedef Point Vector;
    Vector operator +(Vector A,Vector B){return Vector(A.x+B.x,A.y+B.y);}
    Vector operator -(Vector A,Vector B){return Vector(A.x-B.x,A.y-B.y);}
    Vector operator *(Vector A,double p){return Vector(A.x*p,A.y*p);}
    Vector operator /(Vector A,double p){return Vector(A.x/p,A.y/p);}
    bool operator < (const Point &a,const Point &b)
    {
        return a.x<b.x||(a.x==b.x&&a.y<b.y);
    }
    const double eps=1e-10;
    
    int dcmp(double x)
    {
        if(fabs(x)<eps) return 0;
        else return x<0?-1:1;
    }
    
    bool operator == (const Point &a,const Point &b){
        return (dcmp(a.x-b.x)==0 && dcmp(a.y-b.y)==0);
    }
    
    double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;}//点积
    double Length(Vector A){return sqrt(Dot(A,A));}//向量长度
    //两向量的夹角
    double Angle(Vector A,Vector B){return acos(Dot(A,B)/Length(A)/Length(B));}
    
    double Cross(Vector A,Vector B){ return A.x*B.y-A.y*B.x;}//叉积
    
    Vector Rotate(Vector A,double rad)//向量旋转
    {
        return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
    }
    
    Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)//两直线的交点
    {
        Vector u=P-Q;
        double t=Cross(w,u)/Cross(v,w);
        return P+v*t;
    }
    
    Point read_point()
    {
        Point A;
        scanf("%lf %lf",&A.x,&A.y);
        return A;
    }
    
    
    Point getpoint(Point A,Point B,Point C)
    {
        Vector v1,v2;
        double a1,a2;
        v1=C-B;
        v2=B-C;
        a1=Angle(A-B,C-B)/3;
        a2=Angle(A-C,B-C)/3;
        v1=Rotate(v1,a1);
        v2=Rotate(v2,-a2);
        return GetLineIntersection(B,v1,C,v2);
    }
    
    int main()
    {
        int T;
        Point A,B,C,D,E,F;
        scanf("%d",&T);
        while(T--)
        {
            A=read_point();
            B=read_point();
            C=read_point();
            D=getpoint(A,B,C);
            E=getpoint(B,C,A);
            F=getpoint(C,A,B);
            printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf
    ",D.x,D.y,E.x,E.y,F.x,F.y);
        }
        return 0;
    }

  • 相关阅读:
    ESM CORR
    格式化用jad反编译混淆过的代码,能去大部分错误 (zhuanzai)
    Simple Event Correlation installation and configuration
    linux系统时间和硬件时钟问题(date和hwclock)
    float:center???
    [Android]Volley源代码分析(二)Cache
    iTOP-4412 开发板的 GPIO 是怎么操作的?
    Android手掌抑制功能的实现
    第十二周项目3-摩托车继承自行车和电动车
    面对苦难请勇敢
  • 原文地址:https://www.cnblogs.com/xiong-/p/3381277.html
Copyright © 2011-2022 走看看