zoukankan      html  css  js  c++  java
  • uva 11464

    We have a grid of size N x N. Each cell of the grid initially contains a zero(0) or a one(1). 
    The parity of a cell is the number of 1s surrounding that cell. A cell is surrounded by at most 4 cells (top, bottom, left, right).

    Suppose we have a grid of size 4 x 4: 

    1

    0

    1

    0

    The parity of each cell would be

    1

    3

    1

    2

    1

    1

    1

    1

    2

    3

    3

    1

    0

    1

    0

    0

    2

    1

    2

    1

    0

    0

    0

    0

    0

    1

    0

    0

    For this problem, you have to change some of the 0s to 1s so that the parity of every cell becomes even. We are interested in the minimum number of transformations of 0 to 1 that is needed to achieve the desired requirement.

     
    Input

    The first line of input is an integer T (T<30) that indicates the number of test cases. Each case starts with a positive integer N(1≤N≤15). Each of the next N lines contain N integers (0/1) each. The integers are separated by a single space character.

    Output

    For each case, output the case number followed by the minimum number of transformations required. If it's impossible to achieve the desired result, then output -1 instead.

    Sample Input                             Output for Sample Input

    3
    3
    0 0 0
    0 0 0
    0 0 0
    3
    0 0 0
    1 0 0
    0 0 0
    3
    1 1 1
    1 1 1
    0 0 0
     

    Case 1: 0 
    Case 2: 3 
    Case 3: -1


     

     1 /*
     2 把尽量少的0变成1,使得每个元素上下左右的元素(存在的话)之和均为偶数
     3 */
     4 #include <iostream>
     5 #include <string>
     6 #include <cstdio>
     7 using namespace std;
     8 
     9 const int maxn=16;
    10 const int INF=100000000;
    11 int T,n,ans;
    12 int A[maxn][maxn],B[maxn][maxn];
    13 int min(int a,int b){ return a<b?a:b;}
    14 
    15 int fun(string s)
    16 {
    17     int cnt=0,i,j,sum;
    18     for(i=0;i<n;i++) B[0][i]=s[i]-'0';
    19     for(i=1;i<n;i++)
    20         for(j=0;j<n;j++) B[i][j]=A[i][j];
    21     for(i=0;i<n;i++)
    22     {
    23         for(j=0;j<n;j++)
    24         {
    25             sum=0;
    26             if(i>0) sum+=B[i-1][j];
    27             if(j>0) sum+=B[i][j-1];
    28             if(j<n-1) sum+=B[i][j+1];
    29             if(i<n-1 && sum%2==0 && B[i+1][j]==1) return INF;
    30             if(i<n-1 && sum%2==1 && B[i+1][j]==0) B[i+1][j]='1';
    31             if(i==n-1 && sum%2==1) return INF;
    32         }
    33     }
    34     for(i=0;i<n;i++)
    35     {
    36         for(j=0;j<n;j++)
    37             if(B[i][j]!=A[i][j]) cnt++;
    38     }
    39     return cnt;
    40 }
    41 void dfs(string s,int i)
    42 {
    43     if(i==n)
    44     {
    45         ans=min(ans,fun(s));
    46         return ;
    47     }
    48     if(s[i]=='0')
    49     {
    50         dfs(s,i+1);
    51         s[i]='1';
    52         dfs(s,i+1);
    53         s[i]='0';
    54     }
    55     else dfs(s,i+1);
    56 }
    57 void solve()
    58 {
    59     ans=INF;
    60     string s="";
    61     for(int i=0;i<n;i++) s+=A[0][i]+'0';
    62     dfs(s,0);
    63     if(ans==INF) ans=-1;
    64     printf("%d
    ",ans);
    65 }
    66 int main()
    67 {
    68     int icase=0;
    69     scanf("%d",&T);
    70     while(T--)
    71     {
    72         scanf("%d",&n);
    73         for(int i=0;i<n;i++)
    74         {
    75             for(int j=0;j<n;j++)
    76                 scanf("%d",&A[i][j]);
    77         }
    78         printf("Case %d: ",++icase);
    79         solve();
    80     }
    81     return 0;
    82 }
  • 相关阅读:
    JVM虚拟机
    antd Table排序问题
    关于element-ui中el-container布满全局的问题!
    vue 安装css预处理器LESS
    mybatis官网
    Lombok安装及使用介绍
    thymeleaf中th:each的使用,遍历数组
    thymeleaf中th:text和th:utext的使用与区别
    SprongBoot项目的打包与启动
    SpringBoot简单学习
  • 原文地址:https://www.cnblogs.com/xiong-/p/3765795.html
Copyright © 2011-2022 走看看