zoukankan      html  css  js  c++  java
  • uva 10828 高斯消元求数学期望

    Back to Kernighan-Ritchie
    Input: Standard Input

    Output: Standard Output

    You must have heard the name of Kernighan and Ritchie, the authors of The C Programming Language. While coding in C, we use different control statements and loops, such as, if-then-elsefordo-while, etc. Consider the following fragment of pseudo code:

       //execution starts here

       do {

          U;

          V;

       } while(condition);

       W;

    In the above code, there is a bias in each conditional branch. Such codes can be represented by control flow graphs like below:

    Let the probability of jumping from one node of the graph to any of its adjacent nodes be equal. So, in the above code fragment, the expected number of times U executes is 2. In this problem, you will be given with such a control flow graph and find the expected number of times a node is visited starting from a specific node.

    Input

    Input consists of several test cases. There will be maximum 100 test cases. Each case starts with an integer: n (n ≤ 100). Here n is the number of nodes in the graph. Each node in the graph is labeled with 1 ton and execution always starts from 1. Each of the next few lines has two integers: start and end which means execution may jump from node startto node end. A value of zero for start ends this list. After this, there will be an integer q (q ≤ 100) denoting the number of queries to come. Next q lines contain a node number for which you have to evaluate the expected number of times the node is visited. The last test case has value of zero for n which should not be processed.

    Output

    Output for each test case should start with “Case #i:” with next q lines containing the results of the queries in the input with three decimal places. There can be situations where a node will be visited forever (for example, an infinite for loop). In such cases, you should print “infinity” (without the quotes). See the sample output section for details of formatting.

    Sample Input                                  Output for Sample Input

    3

    1 2

    2 3

    2 1

    0 0

    3

    1

    2

    3

    3

    1 2

    2 3

    3 1

    0 0

    3

    3

    2

    1

    0

    Case #1:

    2.000

    2.000

    1.000

    Case #2:

    infinity

    infinity

    infinity


    Problem setter: Mohammad Sajjad Hossain

    Special Thanks: Shahriar Manzoor

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <vector>
     5 #include <cmath>
     6 using namespace std;
     7 
     8 const int maxn=110;
     9 const double eps=1e-8;
    10 typedef double Matrix[maxn][maxn];
    11 Matrix A;
    12 int n,d[maxn];//d数组存i节点的初读
    13 bool inf[maxn];//标记无穷变量
    14 vector<int> pre[maxn];//存i节点的前驱
    15 
    16 void swap(double &a,double &b){double t=a;a=b;b=t;}
    17 
    18 void gauss_jordan()
    19 {
    20     int i,j,r,k;
    21     for(i=0;i<n;i++)
    22     {
    23         r=i;
    24         for(j=i+1;j<n;j++)
    25             if(fabs(A[j][i])>fabs(A[r][i])) r=j;
    26             if(fabs(A[r][i])<eps) continue;
    27             if(r!=i)for(j=0;j<=n;j++) swap(A[r][j],A[i][j]);
    28             //与第i行以外的其他行进行消元
    29             for(k=0;k<n;k++) if(k!=i)
    30                 for(j=n;j>=i;j--) A[k][j]-=A[k][i]/A[i][i]*A[i][j];
    31     }
    32 }
    33 int main()
    34 {
    35     //freopen("in.txt","r",stdin);
    36     //freopen("out.txt","w",stdout);
    37     int i,j,icase=0;
    38     while(scanf("%d",&n),n)
    39     {
    40         memset(d,0,sizeof(d));
    41         for(i=0;i<n;i++) pre[i].clear();
    42         int a,b;
    43         while(scanf("%d %d",&a,&b),a)
    44         {
    45             a--;b--;d[a]++;
    46             pre[b].push_back(a);        
    47         }
    48         memset(A,0,sizeof(A));
    49         for(i=0;i<n;i++)//构造方程组
    50         {
    51             A[i][i]=1;
    52             for(j=0;j<pre[i].size();j++)
    53                 A[i][pre[i][j]]-=1.0/d[pre[i][j]];
    54             if(i==0) A[i][n]=1;
    55         }
    56         //解方程组,标记无穷变量
    57         gauss_jordan();
    58         memset(inf,0,sizeof(inf));
    59         for(i=n-1;i>=0;i--)
    60         {
    61             if(fabs(A[i][i])<eps && fabs(A[i][n])>eps) inf[i]=true;//这个变量无解,标记为无穷变量
    62             for(j=i+1;j<n;j++)//跟无穷变量扯上关系的也是无穷的
    63                 if(fabs(A[i][j])>eps && inf[j]) inf[i]=true;
    64         }
    65         int q,p;
    66         scanf("%d",&q);
    67         printf("Case #%d:
    ",++icase);
    68         while(q--)
    69         {
    70             scanf("%d",&p);p--;
    71             if(inf[p]) printf("infinity
    ");
    72             else printf("%.3lf
    ",fabs(A[p][p])<eps?0.0:A[p][n]/A[p][p]);
    73         }
    74     }
    75     return 0;
    76 }
  • 相关阅读:
    跨域现象及原理分析
    git的commit撤销
    什么是幂等,什么情况下需要幂等,如何实现幂等
    flowable表简要说明
    关于SpringCloud、SpringBoot简单讲解
    常用的maven仓库地址
    Python安装第三方库常用方法
    反编译pyinstaller打包的exe安装包
    测试用例-需要添加@Transactional 这样 就不会再数据库里面留下痕迹了
    断点 太多了 调试运行特别慢-把所有的历史断点都去掉就快了
  • 原文地址:https://www.cnblogs.com/xiong-/p/3861681.html
Copyright © 2011-2022 走看看