zoukankan      html  css  js  c++  java
  • UVA 10003 Cutting Sticks(区间dp)

    Description

    Download as PDF
     

     

      Cutting Sticks 
    You have to cut a wood stick into pieces. The most affordable company, The Analog Cutting Machinery, Inc. (ACM), charges money according to the length of the stick being cut. Their procedure of work requires that they only make one cut at a time.

    It is easy to notice that different selections in the order of cutting can led to different prices. For example, consider a stick of length 10 meters that has to be cut at 2, 4 and 7 meters from one end. There are several choices. One can be cutting first at 2, then at 4, then at 7. This leads to a price of 10 + 8 + 6 = 24 because the first stick was of 10 meters, the resulting of 8 and the last one of 6. Another choice could be cutting at 4, then at 2, then at 7. This would lead to a price of 10 + 4 + 6 = 20, which is a better price.

    Your boss trusts your computer abilities to find out the minimum cost for cutting a given stick.

    Input 

    The input will consist of several input cases. The first line of each test case will contain a positive number l that represents the length of the stick to be cut. You can assume l < 1000. The next line will contain the number n ( n < 50) of cuts to be made.

    The next line consists of n positive numbers ci ( 0 < ci < l) representing the places where the cuts have to be done, given in strictly increasing order.

    An input case with l = 0 will represent the end of the input.

    Output 

    You have to print the cost of the optimal solution of the cutting problem, that is the minimum cost of cutting the given stick. Format the output as shown below.

    Sample Input 

    100
    3
    25 50 75
    10
    4
    4 5 7 8
    0
    

    Sample Output 

    The minimum cutting is 200.
    The minimum cutting is 22.
    

     状态转移方程:d(i,j)=min(d(i,k)+d(k,j)+a[j]-a[i]) (i<k<j)

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 using namespace std;
     5 
     6 const int maxn=55;
     7 const int INF=10000000;
     8 int d[maxn][maxn],a[maxn],l,n;
     9 inline int min(int a,int b){return a<b?a:b;}
    10 
    11 int dp(int i,int j)
    12 {
    13     if(i+1==j) return d[i][j]=0;
    14     if(d[i][j]!=-1) return d[i][j];
    15     d[i][j]=INF;
    16     for(int k=i+1;k<j;k++)
    17         d[i][j]=min(d[i][j],dp(i,k)+dp(k,j)+a[j]-a[i]);
    18     return d[i][j];
    19 }
    20 int main()
    21 {
    22     while(~scanf("%d",&l),l)
    23     {
    24         scanf("%d",&n);
    25         memset(d,-1,sizeof(d));
    26         for(int i=1;i<=n;i++) scanf("%d",a+i);
    27         a[0]=0;a[n+1]=l;
    28         printf("The minimum cutting is %d.
    ",dp(0,n+1));
    29     }
    30     return 0;
    31 }
  • 相关阅读:
    FineReport---数据集
    FineReport----单元格元素(数据列、公式、斜线)
    FineReport---样式
    SQL-修改: 将日期修改为空NULL、修改为空的记录
    sql---字段类型转换,保留小数位数,取日期格式,sql获取当前时间,时间处理
    深入浅出Mqtt协议
    一文了解Redis
    RDBMS关系型数据库与HBase的对比
    Greedysky:C++ 建议用 nullptr 而不是 NULL
    Greedysky:C++11 新特性之强制类型转换static_cast
  • 原文地址:https://www.cnblogs.com/xiong-/p/3893505.html
Copyright © 2011-2022 走看看