zoukankan      html  css  js  c++  java
  • CF718C Sasha and Array

    Description

    洛谷传送门

    Solution

    转移方程就是斐波那契数列求和,题目里也都给了。

    矩阵也比较基础吧,不写了。

    但是这道题需要用到线段树维护矩阵乘法

    听着挺吓人的,其实也没有多难。

    我们首先建一棵矩阵类型的线段树。

    然后 (build) 为初始输入的斐波那契数(即 (f^{A - 1}),因为我们的 (f) 矩阵中已经有前两项了,所以次方要 -1)。

    区间修改(加上 (x))其实就是乘上 (x) 次方。(lazy) 标记中存初始矩阵 (x) 次方之后的结果。

    (pushdown) 时,令原来的数直接乘上 (lazy) 标记即可。

    查询操作,我们线段树中维护的就是区间和,直接查询即可。

    Code

    代码个人感觉还是比较简明易懂的,不写注释了。

    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <cstring>
    #define ll long long
    
    using namespace std;
    
    inline ll read(){
        ll x = 0;
        char ch = getchar();
        while(ch < '0' || ch > '9') ch = getchar();
        while(ch >= '0' && ch <= '9') x = (x << 3) + (x << 1) + ch - '0', ch = getchar();
        return x;
    }
    
    const ll mod = 1e9 + 7;
    
    struct matrix{
        ll num[5][5];
        matrix(){
            memset(num, 0, sizeof(num));
        }
        void init(){
            for(int i = 1; i <= 2; i++)
                num[i][i] = 1;
        }
        bool empty(){
            if(num[1][1] != 1 || num[2][2] != 1 || num[1][2] || num[2][1]) return 0;
            return 1;
        }
        void clear(){
            memset(num, 0, sizeof(num));
        }
        matrix operator * (const matrix &b) const{
            matrix r;
            for(int i = 1; i <= 2; i++)
                for(int j = 1; j <= 2; j++)
                    for(int k = 1; k <= 2; k++)
                        r.num[i][j] = (r.num[i][j] + num[i][k] * b.num[k][j]) % mod;
            return r;
        }
        matrix operator + (const matrix &b) const{
            matrix r;
            for(int i = 1; i <= 2; i++)
                for(int j = 1; j <= 2; j++)
                    r.num[i][j] = (num[i][j] + b.num[i][j]) % mod;
            return r;
        }
        matrix operator ^ (ll p) const{
            matrix r, a;
            memcpy(a.num, num, sizeof(num));
            r.init();
            for(; p; p >>= 1, a = a * a)
                if(p & 1) r = r * a;
            return r;
        }
    }f, A;
    
    #define ls rt << 1
    #define rs rt << 1 | 1
    
    const ll N = 1e5 + 10;
    ll n, m;
    ll a[N];
    matrix sum[N << 2], lazy[N << 2];
    
    inline void pushup(ll rt){
        sum[rt] = sum[ls] + sum[rs];
    }
    
    inline void pushdown(ll l, ll r, ll rt){
        if(lazy[rt].empty()) return;
        ll mid = (l + r) >> 1;
        sum[ls] = sum[ls] * lazy[rt];
        sum[rs] = sum[rs] * lazy[rt];
        lazy[ls] = lazy[ls] * lazy[rt];
        lazy[rs] = lazy[rs] * lazy[rt];
        lazy[rt].clear();
        lazy[rt].init();
    }
    
    inline void build(ll l, ll r, ll rt){
        lazy[rt].init();
        if(l == r){
            sum[rt] = f * (A ^ (a[l] - 1));
            return;
        }
        ll mid = (l + r) >> 1;
        build(l, mid, ls);
        build(mid + 1, r, rs);
        pushup(rt);
    }
    
    inline void update(matrix x, ll L, ll R, ll l, ll r, ll rt){
        if(L <= l && r <= R){
            sum[rt] = sum[rt] * x;
            lazy[rt] = lazy[rt] * x;
            return;
        }
        pushdown(l, r, rt);
        ll mid = (l + r) >> 1;
        if(L <= mid) update(x, L, R, l, mid, ls);
        if(R > mid) update(x, L, R, mid + 1, r, rs);
        pushup(rt);
    }
    
    matrix query(ll L, ll R, ll l, ll r, ll rt){
        if(L <= l && r <= R)
            return sum[rt];
        pushdown(l, r, rt);
        ll mid = (l + r) >> 1;
        matrix res;
        if(L <= mid) res = res + query(L, R, l, mid, ls);
        if(R > mid) res = res + query(L, R, mid + 1, r, rs);
        return res;
    }
    
    signed main(){
        f.num[1][1] = f.num[1][2] = 1;
        A.num[1][1] = A.num[1][2] = A.num[2][1] = 1;
        ll n = read(), m = read();
        for(int i = 1; i <= n; i++)
            a[i] = read();
        build(1, n, 1);
        while(m--){
            ll op = read(), l = read(), r = read(), x;
            if(op == 1){
                x = read();
                update(A ^ x, l, r, 1, n, 1);
            }else
                printf("%lld
    ", query(l, r, 1, n, 1).num[1][2] % mod);
        }
        return 0;
    }
    

    End

    本文来自博客园,作者:xixike,转载请注明原文链接:https://www.cnblogs.com/xixike/p/15363374.html

  • 相关阅读:
    windows 命令修改IP
    iptables_forward
    python之pickle模块
    python之os.path模块
    python之random模块
    python基础之常用模块
    python基础之测试题
    python 集合(set)基础
    python编码与解码
    python3 字符串基础
  • 原文地址:https://www.cnblogs.com/xixike/p/15363374.html
Copyright © 2011-2022 走看看