Description
Solution
转移方程就是斐波那契数列求和,题目里也都给了。
矩阵也比较基础吧,不写了。
但是这道题需要用到线段树维护矩阵乘法。
听着挺吓人的,其实也没有多难。
我们首先建一棵矩阵类型的线段树。
然后 (build) 为初始输入的斐波那契数(即 (f^{A - 1}),因为我们的 (f) 矩阵中已经有前两项了,所以次方要 -1)。
区间修改(加上 (x))其实就是乘上 (x) 次方。(lazy) 标记中存初始矩阵 (x) 次方之后的结果。
(pushdown) 时,令原来的数直接乘上 (lazy) 标记即可。
查询操作,我们线段树中维护的就是区间和,直接查询即可。
Code
代码个人感觉还是比较简明易懂的,不写注释了。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#define ll long long
using namespace std;
inline ll read(){
ll x = 0;
char ch = getchar();
while(ch < '0' || ch > '9') ch = getchar();
while(ch >= '0' && ch <= '9') x = (x << 3) + (x << 1) + ch - '0', ch = getchar();
return x;
}
const ll mod = 1e9 + 7;
struct matrix{
ll num[5][5];
matrix(){
memset(num, 0, sizeof(num));
}
void init(){
for(int i = 1; i <= 2; i++)
num[i][i] = 1;
}
bool empty(){
if(num[1][1] != 1 || num[2][2] != 1 || num[1][2] || num[2][1]) return 0;
return 1;
}
void clear(){
memset(num, 0, sizeof(num));
}
matrix operator * (const matrix &b) const{
matrix r;
for(int i = 1; i <= 2; i++)
for(int j = 1; j <= 2; j++)
for(int k = 1; k <= 2; k++)
r.num[i][j] = (r.num[i][j] + num[i][k] * b.num[k][j]) % mod;
return r;
}
matrix operator + (const matrix &b) const{
matrix r;
for(int i = 1; i <= 2; i++)
for(int j = 1; j <= 2; j++)
r.num[i][j] = (num[i][j] + b.num[i][j]) % mod;
return r;
}
matrix operator ^ (ll p) const{
matrix r, a;
memcpy(a.num, num, sizeof(num));
r.init();
for(; p; p >>= 1, a = a * a)
if(p & 1) r = r * a;
return r;
}
}f, A;
#define ls rt << 1
#define rs rt << 1 | 1
const ll N = 1e5 + 10;
ll n, m;
ll a[N];
matrix sum[N << 2], lazy[N << 2];
inline void pushup(ll rt){
sum[rt] = sum[ls] + sum[rs];
}
inline void pushdown(ll l, ll r, ll rt){
if(lazy[rt].empty()) return;
ll mid = (l + r) >> 1;
sum[ls] = sum[ls] * lazy[rt];
sum[rs] = sum[rs] * lazy[rt];
lazy[ls] = lazy[ls] * lazy[rt];
lazy[rs] = lazy[rs] * lazy[rt];
lazy[rt].clear();
lazy[rt].init();
}
inline void build(ll l, ll r, ll rt){
lazy[rt].init();
if(l == r){
sum[rt] = f * (A ^ (a[l] - 1));
return;
}
ll mid = (l + r) >> 1;
build(l, mid, ls);
build(mid + 1, r, rs);
pushup(rt);
}
inline void update(matrix x, ll L, ll R, ll l, ll r, ll rt){
if(L <= l && r <= R){
sum[rt] = sum[rt] * x;
lazy[rt] = lazy[rt] * x;
return;
}
pushdown(l, r, rt);
ll mid = (l + r) >> 1;
if(L <= mid) update(x, L, R, l, mid, ls);
if(R > mid) update(x, L, R, mid + 1, r, rs);
pushup(rt);
}
matrix query(ll L, ll R, ll l, ll r, ll rt){
if(L <= l && r <= R)
return sum[rt];
pushdown(l, r, rt);
ll mid = (l + r) >> 1;
matrix res;
if(L <= mid) res = res + query(L, R, l, mid, ls);
if(R > mid) res = res + query(L, R, mid + 1, r, rs);
return res;
}
signed main(){
f.num[1][1] = f.num[1][2] = 1;
A.num[1][1] = A.num[1][2] = A.num[2][1] = 1;
ll n = read(), m = read();
for(int i = 1; i <= n; i++)
a[i] = read();
build(1, n, 1);
while(m--){
ll op = read(), l = read(), r = read(), x;
if(op == 1){
x = read();
update(A ^ x, l, r, 1, n, 1);
}else
printf("%lld
", query(l, r, 1, n, 1).num[1][2] % mod);
}
return 0;
}