zoukankan      html  css  js  c++  java
  • AT5200 [AGC038C] LCMs 题解

    Description

    Luogu传送门

    SOlution

    题意非常清晰明了,下面我们来谈一谈如何求解。

    实际上跟 P3391 是一样的,我们先考虑 \(i\)\(j\) 都从 1 开始的情况,即:

    \[\sum\limits_{i = 1}^n\sum\limits_{j = 1}^nlcm(a_i, a_j) \]

    直接求是不太行的,所以我们把输入的属放到一个桶里面,设为 \(t\)

    那么我们最终要求的答案就是:

    \[\sum_{i=1}^n\sum_{j=1}^n lcm(i,j)\times t[i] \times t[j] \]

    下面就是喜闻乐见的推式子环节啦。

    \[\sum_{i=1}^n\sum_{j=1}^n \frac{i \times j\times t[i] \times t[j]}{\gcd(i,j)} \\ \sum_{i=1}^n\sum_{j=1}^n\sum\limits_{d = 1}^n\frac{i \times j\times t[i] \times t[j]}{[\gcd(i,j) == d]d} \]

    \(d\) 提前:

    \[\sum_{d=1}^n\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}\sum_{j=1}^{\lfloor \frac{n}{d} \rfloor}\frac{id \times jd\times t[id] \times t[jd]}{[\gcd(i,j) == 1]d} \]

    上下同时除以 \(d\)

    \[\sum_{d=1}^n\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}\sum_{j=1}^{\lfloor \frac{n}{d} \rfloor}[\gcd(i,j)=1]d\times i \times j \times t[id] \times t[jd] \]

    经典莫比乌斯反演:

    \[\sum_{d=1}^n\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}\sum_{j=1}^{\lfloor \frac{n}{d} \rfloor}\sum_{k|(i,j)}\mu(k) \times d\times i \times j \times t[id] \times t[jd] \]

    \(k\) 提前:

    \[\\ \sum_{d=1}^n\sum_{k=1}^{\lfloor \frac{n}{d}\rfloor}\sum_{i=1}^{\lfloor \frac{n}{kd}\rfloor}\sum_{j=1}^{\lfloor \frac{n}{kd}\rfloor}\mu(k)\times d \times i \times j \times k^2 \times t[idk] \times t[jdk] \]

    套路的令 \(T = dk\)

    \[\\ \sum\limits_{T = 1}^n\sum\limits_{k | T}\sum_{i=1}^{\lfloor \frac{n}{T}\rfloor}\sum_{j=1}^{\lfloor \frac{n}{T}\rfloor}\mu(k)\times T \times k \times i \times j \times t[iT] \times t[jT] \\ \sum_{T=1}^{n}T\times(\sum_{i=1}^{\lfloor \frac{n}{T} \rfloor}i\times t[iT])^2 \times \sum_{k|T}\mu(k)\times k \]

    至此,我们的式子就推完了,最后一项预处理,前面的暴力计算答案即可。

    但是我们现在求的是 \(j\) 从 1 开始的情况,那从 \(i + 1\) 开始的话答案是多少呢?

    也很简单,看一张图就明白了:

    AT5200

    我们推的式子是第一个完整的正方形,而答案要求的是右边那个上三角。

    所以我们减去对角线再除以二就是题目要求的答案了。

    即:

    \[ans = \frac{res - \sum\limits_{i = 1}^nlcm(a_i, a_i) }{2} \]

    \(res\) 是上面推的式子所求的值,显然要减去的 \(\sum\) 就是 \(a\) 数组的和。

    Code

    #include <bits/stdc++.h>
    #define ll long long
    
    using namespace std;
    
    namespace IO{
        inline int read(){
            int x = 0;
            char ch = getchar();
            while(!isdigit(ch)) ch = getchar();
            while(isdigit(ch)) x = (x << 3) + (x << 1) + ch - '0', ch = getchar();
            return x;
        }
    
        template <typename T> inline void write(T x){
            if(x > 9) write(x / 10);
            putchar(x % 10 + '0');
        }
    }
    using namespace IO;
    
    const int N = 5e4;
    int n, m;
    int t[N + 10], p[N + 10], mu[N + 10], tot;
    ll sum[N + 10];
    bool vis[N + 10];
    
    inline void euler(int n){
        mu[1] = 1;
        for(int i = 2; i <= n; ++i){
            if(!vis[i]) p[++tot] = i, mu[i] = -1;
            for(int j = 1; j <= tot && i * p[j] <= n; ++j){
                vis[i * p[j]] = 1;
                if(i % p[j] != 0) mu[i * p[j]] = -mu[i];
                else break;
            }
        }
        for(int i = 1; i <= n; ++i)
            for(int j = i; j <= n; j += i)
                sum[j] += 1ll * mu[i] * i;
    }
    
    inline ll solve(int n){
        ll ans = 0;
        for(int T = 1; T <= n; ++T){
            ll res = 0;
            for(int i = 1; i <= n / T; ++i) res += 1ll * i * t[i * T];
            ans += 1ll * T * res * res * sum[T];
        }
        return ans;
    }
    
    int main(){
        n = read();
        for(int i = 1, x; i <= n; ++i)
            t[x = read()]++, m = max(m, x);
        euler(m);
        write(solve(m)), puts("");
        return 0;
    }
    

    \[\_EOF\_ \]

  • 相关阅读:
    [两个数]最大公约(因)数和最小公倍数
    【curl】【php】curl报错,错误代码77,CURLE_SSL_CACERT_BADFILE (77)解决方法
    【杂项】【旅行】旅行必备
    【windows】【php】【nginx】windows 开机自启动nginx php 及nginx php配置
    【mysql】linux, mac mysql数据库root 密码忘记修改
    【mysql】 load local data infield 报错 ERROR 1148 (42000): The used command is not allowed with this MySQL version
    【mysql】配置 选项文件
    【发布相关】【心得体会】发布的注意事项-20180921
    【php】【运算符】位移运算符
    【php】运算符优先级界定
  • 原文地址:https://www.cnblogs.com/xixike/p/15695569.html
Copyright © 2011-2022 走看看