zoukankan      html  css  js  c++  java
  • P2633 Count on a tree 题解

    Descirption

    Luogu传送门

    Solution

    主席树 + LCA + 树上差分

    看到 查询第 \(k\) 小的点权,自然想到主席树。

    那么这道题就是在一棵树上维护一个主席树。

    考虑一个数列上的主席树是如何建的,转换到一棵树上应该不难吧(

    再来看两个点间的区间第 \(k\) 小如何找。

    经典思想:树上差分

    都来做这道题了不会真的有人还不会树上差分吧,不会吧不会吧。

    一个点出现的次数即为:

    \[cnt_x + cnt_y - cnt_{lca(x, y)} - cnt_{fa[(lca(x, y))]} \]

    我们就在主席树上查一下这个即可。

    我用的树链剖分找的 \(lca\)

    Code

    个人觉得代码还是很优美的。

    #include <bits/stdc++.h>
    #define ls(x) t[x].l
    #define rs(x) t[x].r
    
    using namespace std;
    
    namespace IO{
        inline int read(){
            int x = 0;
            char ch = getchar();
            while(!isdigit(ch)) ch = getchar();
            while(isdigit(ch)) x = (x << 3) + (x << 1) + ch - '0', ch = getchar();
            return x;
        }
    
        template <typename T> inline void write(T x){
            if(x > 9) write(x / 10);
            putchar(x % 10 + '0');
        }
    }
    using namespace IO;
    
    const int N = 1e5 + 10;
    int n, m, tot;
    int a[N], b[N];
    
    namespace Segment_Tree{
        struct Tree{
            int rt, sum, l, r;
        }t[N << 5];
        int cnt;
    
        inline int build(int l, int r){
            int rt = ++cnt;
            if(l == r) return rt;
            int mid = (l + r) >> 1;
            ls(rt) = build(l, mid);
            rs(rt) = build(mid + 1, r);
            return rt;
        }
    
        inline int update(int pre, int l, int r, int x){
            int rt = ++cnt;
            ls(rt) = ls(pre), rs(rt) = rs(pre), t[rt].sum = t[pre].sum + 1;
            if(l == r) return rt;
            int mid = (l + r) >> 1;
            if(x <= mid) ls(rt) = update(ls(pre), l, mid, x);
            else rs(rt) = update(rs(pre), mid + 1, r, x);
            return rt;
        }
    
        inline int query(int u, int v, int p, int fap, int l, int r, int k){
            if(l == r) return l;
            int res = t[ls(u)].sum + t[ls(v)].sum - t[ls(p)].sum - t[ls(fap)].sum;
            int mid = (l + r) >> 1;
            if(res >= k) return query(ls(u), ls(v), ls(p), ls(fap), l, mid, k);
            else return query(rs(u), rs(v), rs(p), rs(fap), mid + 1, r, k - res);
        }
    }
    using namespace Segment_Tree;
    
    namespace Tree_Chain_cut{
        struct node{
            int v, nxt;
        }edge[N << 1];
        int head[N], ecnt;
    
        inline void add(int x, int y){
            edge[++ecnt] = (node){y, head[x]};
            head[x] = ecnt;
        }
    
        int dep[N], siz[N], son[N], fa[N];
    
        inline void dfs1(int x, int p){
            t[x].rt = update(t[p].rt, 1, tot, a[x]);
            dep[x] = dep[p] + 1, fa[x] = p, siz[x] = 1;
            for(int i = head[x]; i; i = edge[i].nxt){
                int y = edge[i].v;
                if(y == p) continue;
                dfs1(y, x);
                siz[x] += siz[y];
                if(siz[y] > siz[son[x]]) son[x] = y;
            }
        }
    
        int top[N];
    
        inline void dfs2(int x, int topfa){
            top[x] = topfa;
            if(!son[x]) return;
            dfs2(son[x], topfa);
            for(int i = head[x]; i; i = edge[i].nxt){
                int y = edge[i].v;
                if(y == son[x] || y == fa[x]) continue;
                dfs2(y, y);
            }
        }
    
        inline int lca(int x, int y){
            while(top[x] != top[y]){
                if(dep[top[x]] < dep[top[y]]) swap(x, y);
                x = fa[top[x]];
            }
            return dep[x] < dep[y] ? x : y;
        }
    }
    using namespace Tree_Chain_cut;
    
    inline void prework(){
        sort(b + 1, b + 1 + n);
        tot = unique(b + 1, b + 1 + n) - b - 1;
        for(int i = 1; i <= n; ++i) a[i] = lower_bound(b + 1, b + 1 + tot, a[i]) - b;
        for(int i = 1; i < n; ++i){
            int u = read(), v = read();
            add(u, v), add(v, u);
        }
        t[0].rt = build(1, tot);
        dfs1(1, 0), dfs2(1, 1);
    }
    
    int main(){
        n = read(), m = read();
        for(int i = 1; i <= n; ++i) a[i] = read(), b[i] = a[i];
        prework();
        int lst = 0;
        while(m--){
            int u = read() ^ lst, v = read(), k = read();
            int p = lca(u, v);
            write(lst = b[query(t[u].rt, t[v].rt, t[p].rt, t[fa[p]].rt, 1, tot, k)]), puts("");
        }
        return 0;
    }
    

    \[\_EOF\_ \]

  • 相关阅读:
    centos通过yum安装mongodb
    js基于另一个数组排序数组
    centos 7 安装emule客户端
    typescript中interface和type的区别
    nodejs安装管理工具nvm的安装和使用
    PM2的参数配置
    centOS添加ipv6支持(仅限已分配ipv6地址和网关)
    linux执行计划任务at命令
    mysql中获取本月第一天、本月最后一天、上月第一天、上月最后一天等等
    win10子系统ubuntu内的nginx启动问题
  • 原文地址:https://www.cnblogs.com/xixike/p/15731261.html
Copyright © 2011-2022 走看看