zoukankan      html  css  js  c++  java
  • paddlepaddle目标检测之水果检测(yolov3_mobilenet_v1)

    一、创建项目

    (1)进入到https://aistudio.baidu.com/aistudio/projectoverview/public

    (2)创建项目

    点击添加数据集:找到这两个

    然后创建即可。

    会生成以下项目:

    二、启动环境,选择GPU版本

    然后会进入到以下界面

    选择的两个压缩包在/home/aistudio/data/下,先进行解压:

    !unzip /home/aistudio/data/data15067/fruit.zip
    !unzip /home/aistudio/data/data15072/PaddleDetec.zip

    之后在左边文件夹就可以看到解压后的内容了:

    三、查看fruit-detection中的内容:

    其实是类似pascal voc目标检测数据集的格式

    (1) Annotations

    以第一个apple_65.xml为例:

    folder:文件夹名称

    filename:图片名称

    path:文件地址

    size:图片的大小

    object:图片中的对象名称以及其的左下角和右上角的坐标。

    <annotation>
        <folder>train</folder>
        <filename>apple_65.jpg</filename>
        <path>C:	ensorflow1models
    esearchobject_detectionimages	rainapple_65.jpg</path>
        <source>
            <database>Unknown</database>
        </source>
        <size>
            <width>800</width>
            <height>600</height>
            <depth>3</depth>
        </size>
        <segmented>0</segmented>
        <object>
            <name>apple</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>70</xmin>
                <ymin>25</ymin>
                <xmax>290</xmax>
                <ymax>226</ymax>
            </bndbox>
        </object>
        <object>
            <name>apple</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>35</xmin>
                <ymin>217</ymin>
                <xmax>253</xmax>
                <ymax>453</ymax>
            </bndbox>
        </object>
        <object>
            <name>apple</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>183</xmin>
                <ymin>177</ymin>
                <xmax>382</xmax>
                <ymax>411</ymax>
            </bndbox>
        </object>
        <object>
            <name>apple</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>605</xmin>
                <ymin>298</ymin>
                <xmax>787</xmax>
                <ymax>513</ymax>
            </bndbox>
        </object>
        <object>
            <name>apple</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>498</xmin>
                <ymin>370</ymin>
                <xmax>675</xmax>
                <ymax>567</ymax>
            </bndbox>
        </object>
        <object>
            <name>apple</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>333</xmin>
                <ymin>239</ymin>
                <xmax>574</xmax>
                <ymax>463</ymax>
            </bndbox>
        </object>
        <object>
            <name>apple</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>191</xmin>
                <ymin>350</ymin>
                <xmax>373</xmax>
                <ymax>543</ymax>
            </bndbox>
        </object>
        <object>
            <name>apple</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>443</xmin>
                <ymin>425</ymin>
                <xmax>655</xmax>
                <ymax>598</ymax>
            </bndbox>
        </object>
    </annotation>

    (2)ImageSets

    里面只有一个文件夹Main,Main里面有:

    分别看下是什么:

    val.txt:验证集图片的名称

    orange_92
    banana_79
    apple_94
    apple_93
    banana_81
    banana_94
    orange_77
    mixed_23
    orange_78
    banana_85
    apple_92
    apple_79
    apple_84
    orange_83
    apple_85
    mixed_21
    orange_91
    orange_89
    banana_80
    apple_78
    banana_93
    mixed_22
    orange_94
    apple_83
    banana_90
    apple_77
    orange_79
    apple_81
    orange_86
    orange_95
    banana_88
    orange_85
    orange_80
    apple_80
    apple_82
    mixed_25
    apple_88
    banana_83
    banana_77
    banana_84
    banana_92
    banana_86
    apple_87
    orange_84
    banana_78
    orange_93
    orange_90
    banana_89
    orange_82
    apple_90
    apple_95
    banana_82
    banana_91
    mixed_24
    banana_87
    apple_91
    orange_81
    apple_89
    apple_86
    orange_87

    train.txt:训练集图片的名称,这里就不贴了,有点长,与验证集类似

    label_list.txt:类别名称

    apple
    banana
    orange

    也就是说,水果分类检测目前只是识别三类。

    (3) JPEGImages:存储的就是实际的图片了

    找一下apple_65.jpg看看

    就是这个样子的

    (4) create_list.py、label_list.txt、train.txt、val.txt

    import os
    import os.path as osp
    import re
    import random
    
    devkit_dir = './'
    years = ['2007', '2012']
    
    
    def get_dir(devkit_dir,  type):
        return osp.join(devkit_dir, type)
    
    
    def walk_dir(devkit_dir):
        filelist_dir = get_dir(devkit_dir, 'ImageSets/Main')
        annotation_dir = get_dir(devkit_dir, 'Annotations')
        img_dir = get_dir(devkit_dir, 'JPEGImages')
        trainval_list = []
        test_list = []
        added = set()
    
        for _, _, files in os.walk(filelist_dir):
            for fname in files:
                img_ann_list = []
                if re.match('train.txt', fname):
                    img_ann_list = trainval_list
                elif re.match('val.txt', fname):
                    img_ann_list = test_list
                else:
                    continue
                fpath = osp.join(filelist_dir, fname)
                for line in open(fpath):
                    name_prefix = line.strip().split()[0]
                    if name_prefix in added:
                        continue
                    added.add(name_prefix)
                    ann_path = osp.join(annotation_dir, name_prefix + '.xml')
                    img_path = osp.join(img_dir, name_prefix + '.jpg')
                    assert os.path.isfile(ann_path), 'file %s not found.' % ann_path
                    assert os.path.isfile(img_path), 'file %s not found.' % img_path
                    img_ann_list.append((img_path, ann_path))
    
        return trainval_list, test_list
    
    
    def prepare_filelist(devkit_dir, output_dir):
        trainval_list = []
        test_list = []
        trainval, test = walk_dir(devkit_dir)
        trainval_list.extend(trainval)
        test_list.extend(test)
        random.shuffle(trainval_list)
        with open(osp.join(output_dir, 'train.txt'), 'w') as ftrainval:
            for item in trainval_list:
                ftrainval.write(item[0] + ' ' + item[1] + '
    ')
    
        with open(osp.join(output_dir, 'val.txt'), 'w') as ftest:
            for item in test_list:
                ftest.write(item[0] + ' ' + item[1] + '
    ')
    
    
    if __name__ == '__main__':
        prepare_filelist(devkit_dir, '.')

    将标注信息转换为列表进行存储。

    label_list.txt:还是那三种类别

    train.txt:./JPEGImages/mixed_20.jpg ./Annotations/mixed_20.xml等一系列路径

    val.txt:./JPEGImages/orange_92.jpg ./Annotations/orange_92.xml等一系列路径

    至此fruit-dections中的内容就是这么多了。

    四、查看PaddleDetection中的内容

    (1) configs

    各种网络的配置文件

    找到yolov3_mobilenet_v1_fruit.yml看看

    architecture: YOLOv3
    train_feed: YoloTrainFeed
    eval_feed: YoloEvalFeed
    test_feed: YoloTestFeed
    use_gpu: true
    max_iters: 20000
    log_smooth_window: 20
    save_dir: output
    snapshot_iter: 200
    metric: VOC
    map_type: 11point
    pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar
    weights: output/yolov3_mobilenet_v1_fruit/best_model
    num_classes: 3
    finetune_exclude_pretrained_params: ['yolo_output']
    
    YOLOv3:
      backbone: MobileNet
      yolo_head: YOLOv3Head
    
    MobileNet:
      norm_type: sync_bn
      norm_decay: 0.
      conv_group_scale: 1
      with_extra_blocks: false
    
    YOLOv3Head:
      anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
      anchors: [[10, 13], [16, 30], [33, 23],
                [30, 61], [62, 45], [59, 119],
                [116, 90], [156, 198], [373, 326]]
      norm_decay: 0.
      ignore_thresh: 0.7
      label_smooth: true
      nms:
        background_label: -1
        keep_top_k: 100
        nms_threshold: 0.45
        nms_top_k: 1000
        normalized: false
        score_threshold: 0.01
    
    LearningRate:
      base_lr: 0.00001
      schedulers:
      - !PiecewiseDecay
        gamma: 0.1
        milestones:
        - 15000
        - 18000
      - !LinearWarmup
        start_factor: 0.
        steps: 100
    
    OptimizerBuilder:
      optimizer:
        momentum: 0.9
        type: Momentum
      regularizer:
        factor: 0.0005
        type: L2
    
    YoloTrainFeed:
      batch_size: 1
      dataset:
        dataset_dir: dataset/fruit
        annotation: fruit-detection/train.txt
        use_default_label: false
      num_workers: 16
      bufsize: 128
      use_process: true
      mixup_epoch: -1
      sample_transforms:
      - !DecodeImage
        to_rgb: true
        with_mixup: false
      - !NormalizeBox {}
      - !ExpandImage
        max_ratio: 4.0
        mean: [123.675, 116.28, 103.53]
        prob: 0.5
      - !RandomInterpImage
        max_size: 0
        target_size: 608
      - !RandomFlipImage
        is_mask_flip: false
        is_normalized: true
        prob: 0.5
      - !NormalizeImage
        is_channel_first: false
        is_scale: true
        mean:
        - 0.485
        - 0.456
        - 0.406
        std:
        - 0.229
        - 0.224
        - 0.225
      - !Permute
        channel_first: true
        to_bgr: false
      batch_transforms:
      - !RandomShape 
        sizes: [608] 
      with_background: false
    
    YoloEvalFeed:
      batch_size: 1
      image_shape: [3, 608, 608]
      dataset:
        dataset_dir: dataset/fruit
        annotation: fruit-detection/val.txt
        use_default_label: false
     
    
    YoloTestFeed:
      batch_size: 1
      image_shape: [3, 608, 608]
      dataset:
        dataset_dir: dataset/fruit
    annotation: fruit-detection/label_list.txt use_default_label: false

    注意标红的地方即可。

    (2)contrib

    行人检测和车辆检测?暂时不用管

    (3)dataset: 各文件夹下有py文件,用于下载数据集的

    (4)demo:用于检测结果的示例图片。

    (5)docs:

    (6)inference: 用于推断的‘?

    (7) ppdet:paddlepaddle检测相关文件

    (8) requirements.txt:所需的一些依赖

    tqdm
    docstring_parser @ http://github.com/willthefrog/docstring_parser/tarball/master
    typeguard ; python_version >= '3.4'
    tb-paddle
    tb-nightly

    (9)slim:应该是用于压缩模型的

     

    (10) tools:工具

     五、进行训练

    训练的代码在tools中的train.py

    进入到PaddleDection目录下

    在终端输入:python -u tools/train.py -c configs/yolov3_mobilenet_v1_fruit.yml --use_tb=True --eval

    如果发现错误No module named ppdet,在train.py中加入

    import sys

    sys.path.append("/home/aistudio/PaddleDetection")即可

    最后卡在了这,不过应该是训练完了,在PaddleDection目录下可以看到output文件夹:

    里面有一个迭代时产生的权重信息:

    六、进行测试一张图片

    python -u tools/infer.py -c configs/yolov3_mobilenet_v1_fruit.yml -o weights=/home/aistudio/PaddleDetection/output/yolov3_mobilenet_v1_fruit/model_final --infer_img=demo/orange_71.jpg

    会报错没有相关包,输入以下命令安装:

    pip install docstring_parser 

    pip install pycocotools

    之后:

    去output下看看orange_71.jpg:

    检测出来的是orange,准确率:94%。

    知道了检测训练的整个流程,那么去手动标注poscal voc格式的数据,那么就可以实现检测自己想要的东西了。 然后也可以去看下相关目标检测的论文,明白其中的原理,看看源码之类的。

  • 相关阅读:
    web api 设置允许跨域,并设置预检请求时间
    T4模板
    DDD模式
    Vue watch用法
    第三章--第五节:集合
    简单的Python API爬虫与数据分析教程--目录
    第三章--第四节:字典
    第三章--第三节(补充):列表排序
    汇总张小龙在知乎上的问答
    第三章--第三节:列表
  • 原文地址:https://www.cnblogs.com/xiximayou/p/12419567.html
Copyright © 2011-2022 走看看