zoukankan      html  css  js  c++  java
  • 【tensorflow2.0】模型层layers

    深度学习模型一般由各种模型层组合而成。

    tf.keras.layers内置了非常丰富的各种功能的模型层。例如,

    layers.Dense,layers.Flatten,layers.Input,layers.DenseFeature,layers.Dropout

    layers.Conv2D,layers.MaxPooling2D,layers.Conv1D

    layers.Embedding,layers.GRU,layers.LSTM,layers.Bidirectional等等。

    如果这些内置模型层不能够满足需求,我们也可以通过编写tf.keras.Lambda匿名模型层或继承tf.keras.layers.Layer基类构建自定义的模型层。

    其中tf.keras.Lambda匿名模型层只适用于构造没有学习参数的模型层。

    一,内置模型层

    一些常用的内置模型层简单介绍如下。

    基础层

    • Dense:密集连接层。参数个数 = 输入层特征数× 输出层特征数(weight)+ 输出层特征数(bias)

    • Activation:激活函数层。一般放在Dense层后面,等价于在Dense层中指定activation。

    • Dropout:随机置零层。训练期间以一定几率将输入置0,一种正则化手段。

    • BatchNormalization:批标准化层。通过线性变换将输入批次缩放平移到稳定的均值和标准差。可以增强模型对输入不同分布的适应性,加快模型训练速度,有轻微正则化效果。一般在激活函数之前使用。

    • SpatialDropout2D:空间随机置零层。训练期间以一定几率将整个特征图置0,一种正则化手段,有利于避免特征图之间过高的相关性。

    • Input:输入层。通常使用Functional API方式构建模型时作为第一层。

    • DenseFeature:特征列接入层,用于接收一个特征列列表并产生一个密集连接层。

    • Flatten:压平层,用于将多维张量压成一维。

    • Reshape:形状重塑层,改变输入张量的形状。

    • Concatenate:拼接层,将多个张量在某个维度上拼接。

    • Add:加法层。

    • Subtract: 减法层。

    • Maximum:取最大值层。

    • Minimum:取最小值层。

    卷积网络相关层

    • Conv1D:普通一维卷积,常用于文本。参数个数 = 输入通道数×卷积核尺寸(如3)×卷积核个数

    • Conv2D:普通二维卷积,常用于图像。参数个数 = 输入通道数×卷积核尺寸(如3乘3)×卷积核个数

    • Conv3D:普通三维卷积,常用于视频。参数个数 = 输入通道数×卷积核尺寸(如3乘3乘3)×卷积核个数

    • SeparableConv2D:二维深度可分离卷积层。不同于普通卷积同时对区域和通道操作,深度可分离卷积先操作区域,再操作通道。即先对每个通道做独立卷积操作区域,再用1乘1卷积跨通道组合操作通道。参数个数 = 输入通道数×卷积核尺寸 + 输入通道数×1×1×输出通道数。深度可分离卷积的参数数量一般远小于普通卷积,效果一般也更好。

    • DepthwiseConv2D:二维深度卷积层。仅有SeparableConv2D前半部分操作,即只操作区域,不操作通道,一般输出通道数和输入通道数相同,但也可以通过设置depth_multiplier让输出通道为输入通道的若干倍数。输出通道数 = 输入通道数 × depth_multiplier。参数个数 = 输入通道数×卷积核尺寸× depth_multiplier。

    • Conv2DTranspose:二维卷积转置层,俗称反卷积层。并非卷积的逆操作,但在卷积核相同的情况下,当其输入尺寸是卷积操作输出尺寸的情况下,卷积转置的输出尺寸恰好是卷积操作的输入尺寸。

    • LocallyConnected2D: 二维局部连接层。类似Conv2D,唯一的差别是没有空间上的权值共享,所以其参数个数远高于二维卷积。

    • MaxPooling2D: 二维最大池化层。也称作下采样层。池化层无参数,主要作用是降维。

    • AveragePooling2D: 二维平均池化层。

    • GlobalMaxPool2D: 全局最大池化层。每个通道仅保留一个值。一般从卷积层过渡到全连接层时使用,是Flatten的替代方案。

    • GlobalAvgPool2D: 全局平均池化层。每个通道仅保留一个值。

    循环网络相关层

    • Embedding:嵌入层。一种比Onehot更加有效的对离散特征进行编码的方法。一般用于将输入中的单词映射为稠密向量。嵌入层的参数需要学习。

    • LSTM:长短记忆循环网络层。最普遍使用的循环网络层。具有携带轨道,遗忘门,更新门,输出门。可以较为有效地缓解梯度消失问题,从而能够适用长期依赖问题。设置return_sequences = True时可以返回各个中间步骤输出,否则只返回最终输出。

    • GRU:门控循环网络层。LSTM的低配版,不具有携带轨道,参数数量少于LSTM,训练速度更快。

    • SimpleRNN:简单循环网络层。容易存在梯度消失,不能够适用长期依赖问题。一般较少使用。

    • ConvLSTM2D:卷积长短记忆循环网络层。结构上类似LSTM,但对输入的转换操作和对状态的转换操作都是卷积运算。

    • Bidirectional:双向循环网络包装器。可以将LSTM,GRU等层包装成双向循环网络。从而增强特征提取能力。

    • RNN:RNN基本层。接受一个循环网络单元或一个循环单元列表,通过调用tf.keras.backend.rnn函数在序列上进行迭代从而转换成循环网络层。

    • LSTMCell:LSTM单元。和LSTM在整个序列上迭代相比,它仅在序列上迭代一步。可以简单理解LSTM即RNN基本层包裹LSTMCell。

    • GRUCell:GRU单元。和GRU在整个序列上迭代相比,它仅在序列上迭代一步。

    • SimpleRNNCell:SimpleRNN单元。和SimpleRNN在整个序列上迭代相比,它仅在序列上迭代一步。

    • AbstractRNNCell:抽象RNN单元。通过对它的子类化用户可以自定义RNN单元,再通过RNN基本层的包裹实现用户自定义循环网络层。

    • Attention:Dot-product类型注意力机制层。可以用于构建注意力模型。

    • AdditiveAttention:Additive类型注意力机制层。可以用于构建注意力模型。

    • TimeDistributed:时间分布包装器。包装后可以将Dense、Conv2D等作用到每一个时间片段上。

    二,自定义模型层

    如果自定义模型层没有需要被训练的参数,一般推荐使用Lamda层实现。

    如果自定义模型层有需要被训练的参数,则可以通过对Layer基类子类化实现。

    Lamda层由于没有需要被训练的参数,只需要定义正向传播逻辑即可,使用比Layer基类子类化更加简单。

    Lamda层的正向逻辑可以使用Python的lambda函数来表达,也可以用def关键字定义函数来表达。

    import tensorflow as tf
    from tensorflow.keras import layers,models,regularizers
     
    mypower = layers.Lambda(lambda x:tf.math.pow(x,2))
    mypower(tf.range(5))
    <tf.Tensor: shape=(5,), dtype=int32, numpy=array([ 0,  1,  4,  9, 16], dtype=int32)>

    Layer的子类化一般需要重新实现初始化方法,Build方法和Call方法。下面是一个简化的线性层的范例,类似Dense.

    class Linear(layers.Layer):
        def __init__(self, units=32, **kwargs):
            super(Linear, self).__init__(**kwargs)
            self.units = units
     
        #build方法一般定义Layer需要被训练的参数。    
        def build(self, input_shape): 
            self.w = self.add_weight(shape=(input_shape[-1], self.units),
                                     initializer='random_normal',
                                     trainable=True)
            self.b = self.add_weight(shape=(self.units,),
                                     initializer='random_normal',
                                     trainable=True)
            super(Linear,self).build(input_shape) # 相当于设置self.built = True
     
        #call方法一般定义正向传播运算逻辑,__call__方法调用了它。    
        def call(self, inputs): 
            return tf.matmul(inputs, self.w) + self.b
     
        #如果要让自定义的Layer通过Functional API 组合成模型时可以序列化,需要自定义get_config方法。
        def get_config(self):  
            config = super(Linear, self).get_config()
            config.update({'units': self.units})
            return config
    linear = Linear(units = 8)
    print(linear.built)
    # 指定input_shape,显式调用build方法,第0维代表样本数量,用None填充
    linear.build(input_shape = (None,16)) 
    print(linear.built)
    False
    True
    linear = Linear(units = 8)
    print(linear.built)
    linear.build(input_shape = (None,16)) 
    print(linear.compute_output_shape(input_shape = (None,16)))
    False
    (None, 8)
    linear = Linear(units = 16)
    print(linear.built)
    # 如果built = False,调用__call__时会先调用build方法, 再调用call方法。
    linear(tf.random.uniform((100,64))) 
    print(linear.built)
    config = linear.get_config()
    print(config)
    False
    True
    {'name': 'linear_3', 'trainable': True, 'dtype': 'float32', 'units': 16}
    tf.keras.backend.clear_session()
     
    model = models.Sequential()
    # 注意该处的input_shape会被模型加工,无需使用None代表样本数量维
    model.add(Linear(units = 16,input_shape = (64,)))  
    print("model.input_shape: ",model.input_shape)
    print("model.output_shape: ",model.output_shape)
    model.summary()
    model.input_shape:  (None, 64)
    model.output_shape:  (None, 16)
    Model: "sequential"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    linear (Linear)              (None, 16)                1040      
    =================================================================
    Total params: 1,040
    Trainable params: 1,040
    Non-trainable params: 0

    参考:

    开源电子书地址:https://lyhue1991.github.io/eat_tensorflow2_in_30_days/

    GitHub 项目地址:https://github.com/lyhue1991/eat_tensorflow2_in_30_days

  • 相关阅读:
    空格转换
    vuex学习
    css移动端适配方法
    数组以及数组常用方法
    21-canvas事件监听
    20-canvas之形变
    [转]session 跨域共享方案
    [转载] 从mysql,代码,服务器三个方面看mysql性能优化
    [计算机]Alan Perlis人物简介
    Python环境搭建及pip的使用
  • 原文地址:https://www.cnblogs.com/xiximayou/p/12689846.html
Copyright © 2011-2022 走看看