zoukankan      html  css  js  c++  java
  • 【tensorflow2.0】使用TPU训练模型

    如果想尝试使用Google Colab上的TPU来训练模型,也是非常方便,仅需添加6行代码。

    在Colab笔记本中:修改->笔记本设置->硬件加速器 中选择 TPU

    注:以下代码只能在Colab 上才能正确执行。

    可通过以下colab链接测试效果《tf_TPU》:

    https://colab.research.google.com/drive/1XCIhATyE1R7lq6uwFlYlRsUr5d9_-r1s

    %tensorflow_version 2.x
    import tensorflow as tf
    print(tf.__version__)
    from tensorflow.keras import * 

    一,准备数据

    MAX_LEN = 300
    BATCH_SIZE = 32
    (x_train,y_train),(x_test,y_test) = datasets.reuters.load_data()
    x_train = preprocessing.sequence.pad_sequences(x_train,maxlen=MAX_LEN)
    x_test = preprocessing.sequence.pad_sequences(x_test,maxlen=MAX_LEN)
     
    MAX_WORDS = x_train.max()+1
    CAT_NUM = y_train.max()+1
     
    ds_train = tf.data.Dataset.from_tensor_slices((x_train,y_train)) 
              .shuffle(buffer_size = 1000).batch(BATCH_SIZE) 
              .prefetch(tf.data.experimental.AUTOTUNE).cache()
     
    ds_test = tf.data.Dataset.from_tensor_slices((x_test,y_test)) 
              .shuffle(buffer_size = 1000).batch(BATCH_SIZE) 
              .prefetch(tf.data.experimental.AUTOTUNE).cache()

    二,定义模型

    tf.keras.backend.clear_session()
    def create_model():
     
        model = models.Sequential()
     
        model.add(layers.Embedding(MAX_WORDS,7,input_length=MAX_LEN))
        model.add(layers.Conv1D(filters = 64,kernel_size = 5,activation = "relu"))
        model.add(layers.MaxPool1D(2))
        model.add(layers.Conv1D(filters = 32,kernel_size = 3,activation = "relu"))
        model.add(layers.MaxPool1D(2))
        model.add(layers.Flatten())
        model.add(layers.Dense(CAT_NUM,activation = "softmax"))
        return(model)
     
    def compile_model(model):
        model.compile(optimizer=optimizers.Nadam(),
                    loss=losses.SparseCategoricalCrossentropy(from_logits=True),
                    metrics=[metrics.SparseCategoricalAccuracy(),metrics.SparseTopKCategoricalAccuracy(5)]) 
        return(model)

    三,训练模型

    # 增加以下6行代码
    import os
    resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='grpc://' + os.environ['COLAB_TPU_ADDR'])
    tf.config.experimental_connect_to_cluster(resolver)
    tf.tpu.experimental.initialize_tpu_system(resolver)
    strategy = tf.distribute.experimental.TPUStrategy(resolver)
    with strategy.scope():
        model = create_model()
        model.summary()
        model = compile_model(model)
    INFO:tensorflow:Initializing the TPU system: grpc://10.62.22.122:8470
    INFO:tensorflow:Initializing the TPU system: grpc://10.62.22.122:8470
    INFO:tensorflow:Clearing out eager caches
    INFO:tensorflow:Clearing out eager caches
    INFO:tensorflow:Finished initializing TPU system.
    INFO:tensorflow:Finished initializing TPU system.
    INFO:tensorflow:Found TPU system:
    INFO:tensorflow:Found TPU system:
    INFO:tensorflow:*** Num TPU Cores: 8
    INFO:tensorflow:*** Num TPU Cores: 8
    INFO:tensorflow:*** Num TPU Workers: 1
    INFO:tensorflow:*** Num TPU Workers: 1
    INFO:tensorflow:*** Num TPU Cores Per Worker: 8
    INFO:tensorflow:*** Num TPU Cores Per Worker: 8
    INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 0, 0)
    INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 0, 0)
    INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0)
    INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0)
    INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, 0, 0)
    INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, 0, 0)
    INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 0, 0)
    INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 0, 0)
    INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 0, 0)
    INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 0, 0)
    INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 0, 0)
    INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 0, 0)
    INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 0, 0)
    INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 0, 0)
    INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 0, 0)
    INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 0, 0)
    INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 0, 0)
    INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 0, 0)
    INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 0, 0)
    INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 0, 0)
    INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 0, 0)
    INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 0, 0)
    INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 0, 0)
    INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 0, 0)
    INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0)
    INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0)
    Model: "sequential"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    embedding (Embedding)        (None, 300, 7)            216874    
    _________________________________________________________________
    conv1d (Conv1D)              (None, 296, 64)           2304      
    _________________________________________________________________
    max_pooling1d (MaxPooling1D) (None, 148, 64)           0         
    _________________________________________________________________
    conv1d_1 (Conv1D)            (None, 146, 32)           6176      
    _________________________________________________________________
    max_pooling1d_1 (MaxPooling1 (None, 73, 32)            0         
    _________________________________________________________________
    flatten (Flatten)            (None, 2336)              0         
    _________________________________________________________________
    dense (Dense)                (None, 46)                107502    
    =================================================================
    Total params: 332,856
    Trainable params: 332,856
    Non-trainable params: 0
    _________________________________________________________________
    history = model.fit(ds_train,validation_data = ds_test,epochs = 10)

    前面的都没问题,最后运行上面这句话时colab崩溃了,colab自动重启,不知道是什么原因,下面是原书中的结果:

    Train for 281 steps, validate for 71 steps
    Epoch 1/10
    281/281 [==============================] - 12s 43ms/step - loss: 3.4466 - sparse_categorical_accuracy: 0.4332 - sparse_top_k_categorical_accuracy: 0.7180 - val_loss: 3.3179 - val_sparse_categorical_accuracy: 0.5352 - val_sparse_top_k_categorical_accuracy: 0.7195
    Epoch 2/10
    281/281 [==============================] - 6s 20ms/step - loss: 3.3251 - sparse_categorical_accuracy: 0.5405 - sparse_top_k_categorical_accuracy: 0.7302 - val_loss: 3.3082 - val_sparse_categorical_accuracy: 0.5463 - val_sparse_top_k_categorical_accuracy: 0.7235
    Epoch 3/10
    281/281 [==============================] - 6s 20ms/step - loss: 3.2961 - sparse_categorical_accuracy: 0.5729 - sparse_top_k_categorical_accuracy: 0.7280 - val_loss: 3.3026 - val_sparse_categorical_accuracy: 0.5499 - val_sparse_top_k_categorical_accuracy: 0.7217
    Epoch 4/10
    281/281 [==============================] - 5s 19ms/step - loss: 3.2751 - sparse_categorical_accuracy: 0.5924 - sparse_top_k_categorical_accuracy: 0.7276 - val_loss: 3.2957 - val_sparse_categorical_accuracy: 0.5543 - val_sparse_top_k_categorical_accuracy: 0.7217
    Epoch 5/10
    281/281 [==============================] - 5s 19ms/step - loss: 3.2655 - sparse_categorical_accuracy: 0.6008 - sparse_top_k_categorical_accuracy: 0.7290 - val_loss: 3.3022 - val_sparse_categorical_accuracy: 0.5490 - val_sparse_top_k_categorical_accuracy: 0.7231
    Epoch 6/10
    281/281 [==============================] - 5s 19ms/step - loss: 3.2616 - sparse_categorical_accuracy: 0.6041 - sparse_top_k_categorical_accuracy: 0.7295 - val_loss: 3.3015 - val_sparse_categorical_accuracy: 0.5503 - val_sparse_top_k_categorical_accuracy: 0.7235
    Epoch 7/10
    281/281 [==============================] - 6s 21ms/step - loss: 3.2595 - sparse_categorical_accuracy: 0.6059 - sparse_top_k_categorical_accuracy: 0.7322 - val_loss: 3.3064 - val_sparse_categorical_accuracy: 0.5454 - val_sparse_top_k_categorical_accuracy: 0.7266
    Epoch 8/10
    281/281 [==============================] - 6s 21ms/step - loss: 3.2591 - sparse_categorical_accuracy: 0.6063 - sparse_top_k_categorical_accuracy: 0.7327 - val_loss: 3.3025 - val_sparse_categorical_accuracy: 0.5481 - val_sparse_top_k_categorical_accuracy: 0.7231
    Epoch 9/10
    281/281 [==============================] - 5s 19ms/step - loss: 3.2588 - sparse_categorical_accuracy: 0.6062 - sparse_top_k_categorical_accuracy: 0.7332 - val_loss: 3.2992 - val_sparse_categorical_accuracy: 0.5521 - val_sparse_top_k_categorical_accuracy: 0.7257
    Epoch 10/10
    281/281 [==============================] - 5s 18ms/step - loss: 3.2577 - sparse_categorical_accuracy: 0.6073 - sparse_top_k_categorical_accuracy: 0.7363 - val_loss: 3.2981 - val_sparse_categorical_accuracy: 0.5516 - val_sparse_top_k_categorical_accuracy: 0.7306
    CPU times: user 18.9 s, sys: 3.86 s, total: 22.7 s
    Wall time: 1min 1s

    参考:

    开源电子书地址:https://lyhue1991.github.io/eat_tensorflow2_in_30_days/

    GitHub 项目地址:https://github.com/lyhue1991/eat_tensorflow2_in_30_days

  • 相关阅读:
    sqlmap注入分类
    sqlmap简单中文说明
    【Python Learning第一篇】Linux命令学习及Vim命令的使用
    模拟退火算法从原理到实战【基础篇】
    平面上给定n条线段,找出一个点,使这个点到这n条线段的距离和最小。
    使用VMWareWorkstation10搭建学习环境笔记
    洛谷P1313 计算系数【快速幂+dp】
    浅析Numpy.genfromtxt及File I/O讲解
    持续交付中高效率与高质量
    持续集成CI与自动化测试
  • 原文地址:https://www.cnblogs.com/xiximayou/p/12690731.html
Copyright © 2011-2022 走看看