zoukankan      html  css  js  c++  java
  • pytorch版本的bert模型代码

    代码出处:https://github.com/aespresso/a_journey_into_math_of_ml/blob/master/04_transformer_tutorial_2nd_part/BERT_tutorial/models/bert_model.py

    # coding=utf-8
    # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
    # Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #     http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    """PyTorch BERT model."""
    
    from __future__ import absolute_import, division, print_function, unicode_literals
    
    import copy
    import math
    import sys
    from io import open
    import torch
    from torch import nn
    from torch.nn import CrossEntropyLoss
    
    
    def gelu(x):
        """Implementation of the gelu activation function.
            For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
            0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
            Also see https://arxiv.org/abs/1606.08415
        """
        return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
    
    
    ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu}
    
    
    class BertConfig(object):
        """Configuration class to store the configuration of a `BertModel`.
        """
        def __init__(self,
                     vocab_size, # 字典字数
                     hidden_size=384, # 隐藏层维度也就是字向量维度
                     num_hidden_layers=6, # transformer block 的个数
                     num_attention_heads=12, # 注意力机制"头"的个数
                     intermediate_size=384*4, # feedforward层线性映射的维度
                     hidden_act="gelu", # 激活函数
                     hidden_dropout_prob=0.4, # dropout的概率
                     attention_probs_dropout_prob=0.4,
                     max_position_embeddings=512*2,
                     type_vocab_size=256, # 用来做next sentence预测,
                     # 这里预留了256个分类, 其实我们目前用到的只有0和1
                     initializer_range=0.02 # 用来初始化模型参数的标准差
                     ):
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.hidden_act = hidden_act
            self.intermediate_size = intermediate_size
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.initializer_range = initializer_range
    
    class BertEmbeddings(nn.Module):
        """LayerNorm层, 见Transformer(一), 讲编码器(encoder)的第1部分"""
        """Construct the embeddings from word, position and token_type embeddings.
        """
        def __init__(self, config):
            super(BertEmbeddings, self).__init__()
            self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
            self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
            # embedding矩阵初始化
            nn.init.orthogonal_(self.word_embeddings.weight)
            nn.init.orthogonal_(self.token_type_embeddings.weight)
    
            # embedding矩阵进行归一化
            epsilon = 1e-8
            self.word_embeddings.weight.data = 
                self.word_embeddings.weight.data.div(torch.norm(self.word_embeddings.weight, p=2, dim=1, keepdim=True).data + epsilon)
            self.token_type_embeddings.weight.data = 
                self.token_type_embeddings.weight.data.div(torch.norm(self.token_type_embeddings.weight, p=2, dim=1, keepdim=True).data + epsilon)
    
            # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
            # any TensorFlow checkpoint file
            self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
            self.dropout = nn.Dropout(config.hidden_dropout_prob)
    
        def forward(self, input_ids, positional_enc, token_type_ids=None):
            """
            :param input_ids: 维度 [batch_size, sequence_length]
            :param positional_enc: 位置编码 [sequence_length, embedding_dimension]
            :param token_type_ids: BERT训练的时候, 第一句是0, 第二句是1
            :return: 维度 [batch_size, sequence_length, embedding_dimension]
            """
            # 字向量查表
            words_embeddings = self.word_embeddings(input_ids)
    
            if token_type_ids is None:
                token_type_ids = torch.zeros_like(input_ids)
            token_type_embeddings = self.token_type_embeddings(token_type_ids)
    
            embeddings = words_embeddings + positional_enc + token_type_embeddings
            # embeddings: [batch_size, sequence_length, embedding_dimension]
            embeddings = self.LayerNorm(embeddings)
            embeddings = self.dropout(embeddings)
            return embeddings
    
    
    class BertSelfAttention(nn.Module):
        """自注意力机制层, 见Transformer(一), 讲编码器(encoder)的第2部分"""
        def __init__(self, config):
            super(BertSelfAttention, self).__init__()
            # 判断embedding dimension是否可以被num_attention_heads整除
            if config.hidden_size % config.num_attention_heads != 0:
                raise ValueError(
                    "The hidden size (%d) is not a multiple of the number of attention "
                    "heads (%d)" % (config.hidden_size, config.num_attention_heads))
            self.num_attention_heads = config.num_attention_heads
            self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
            self.all_head_size = self.num_attention_heads * self.attention_head_size
            # Q, K, V线性映射
            self.query = nn.Linear(config.hidden_size, self.all_head_size)
            self.key = nn.Linear(config.hidden_size, self.all_head_size)
            self.value = nn.Linear(config.hidden_size, self.all_head_size)
    
            self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
    
        def transpose_for_scores(self, x):
            # 输入x为QKV中的一个, 维度: [batch_size, seq_length, embedding_dim]
            # 输出的维度经过reshape和转置: [batch_size, num_heads, seq_length, embedding_dim / num_heads]
            new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
            x = x.view(*new_x_shape)
            return x.permute(0, 2, 1, 3)
    
        def forward(self, hidden_states, attention_mask, get_attention_matrices=False):
            # Q, K, V线性映射
            # Q, K, V的维度为[batch_size, seq_length, num_heads * embedding_dim]
            mixed_query_layer = self.query(hidden_states)
            mixed_key_layer = self.key(hidden_states)
            mixed_value_layer = self.value(hidden_states)
            # 把QKV分割成num_heads份
            # 把维度转换为[batch_size, num_heads, seq_length, embedding_dim / num_heads]
            query_layer = self.transpose_for_scores(mixed_query_layer)
            key_layer = self.transpose_for_scores(mixed_key_layer)
            value_layer = self.transpose_for_scores(mixed_value_layer)
    
            # Take the dot product between "query" and "key" to get the raw attention scores.
            # Q与K求点积
            attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
            # attention_scores: [batch_size, num_heads, seq_length, seq_length]
            # 除以K的dimension, 开平方根以归一为标准正态分布
            attention_scores = attention_scores / math.sqrt(self.attention_head_size)
            # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
            attention_scores = attention_scores + attention_mask
            # attention_mask 注意力矩阵mask: [batch_size, 1, 1, seq_length]
            # 元素相加后, 会广播到维度: [batch_size, num_heads, seq_length, seq_length]
    
            # softmax归一化, 得到注意力矩阵
            # Normalize the attention scores to probabilities.
            attention_probs_ = nn.Softmax(dim=-1)(attention_scores)
    
            # This is actually dropping out entire tokens to attend to, which might
            # seem a bit unusual, but is taken from the original Transformer paper.
            attention_probs = self.dropout(attention_probs_)
    
            # 用注意力矩阵加权V
            context_layer = torch.matmul(attention_probs, value_layer)
            # 把加权后的V reshape, 得到[batch_size, length, embedding_dimension]
            context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
            new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
            context_layer = context_layer.view(*new_context_layer_shape)
            # 输出attention矩阵用来可视化
            if get_attention_matrices:
                return context_layer, attention_probs_
            return context_layer, None
    
    class BertLayerNorm(nn.Module):
        """LayerNorm层, 见Transformer(一), 讲编码器(encoder)的第3部分"""
        def __init__(self, hidden_size, eps=1e-12):
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(BertLayerNorm, self).__init__()
            self.weight = nn.Parameter(torch.ones(hidden_size))
            self.bias = nn.Parameter(torch.zeros(hidden_size))
            self.variance_epsilon = eps
    
        def forward(self, x):
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x + self.bias
    
    
    class BertSelfOutput(nn.Module):
        # 封装的LayerNorm和残差连接, 用于处理SelfAttention的输出
        def __init__(self, config):
            super(BertSelfOutput, self).__init__()
            self.dense = nn.Linear(config.hidden_size, config.hidden_size)
            self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
            self.dropout = nn.Dropout(config.hidden_dropout_prob)
    
        def forward(self, hidden_states, input_tensor):
            hidden_states = self.dense(hidden_states)
            hidden_states = self.dropout(hidden_states)
            hidden_states = self.LayerNorm(hidden_states + input_tensor)
            return hidden_states
    
    
    class BertAttention(nn.Module):
        # 封装的多头注意力机制部分, 包括LayerNorm和残差连接
        def __init__(self, config):
            super(BertAttention, self).__init__()
            self.self = BertSelfAttention(config)
            self.output = BertSelfOutput(config)
    
        def forward(self, input_tensor, attention_mask, get_attention_matrices=False):
            self_output, attention_matrices = self.self(input_tensor, attention_mask, get_attention_matrices=get_attention_matrices)
            attention_output = self.output(self_output, input_tensor)
            return attention_output, attention_matrices
    
    
    class BertIntermediate(nn.Module):
        # 封装的FeedForward层和激活层
        def __init__(self, config):
            super(BertIntermediate, self).__init__()
            self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
    
        def forward(self, hidden_states):
            hidden_states = self.dense(hidden_states)
            hidden_states = self.intermediate_act_fn(hidden_states)
            return hidden_states
    
    
    class BertOutput(nn.Module):
        # 封装的LayerNorm和残差连接, 用于处理FeedForward层的输出
        def __init__(self, config):
            super(BertOutput, self).__init__()
            self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
            self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
            self.dropout = nn.Dropout(config.hidden_dropout_prob)
    
        def forward(self, hidden_states, input_tensor):
            hidden_states = self.dense(hidden_states)
            hidden_states = self.dropout(hidden_states)
            hidden_states = self.LayerNorm(hidden_states + input_tensor)
            return hidden_states
    
    
    class BertLayer(nn.Module):
        # 一个transformer block
        def __init__(self, config):
            super(BertLayer, self).__init__()
            self.attention = BertAttention(config)
            self.intermediate = BertIntermediate(config)
            self.output = BertOutput(config)
    
        def forward(self, hidden_states, attention_mask, get_attention_matrices=False):
            # Attention层(包括LayerNorm和残差连接)
            attention_output, attention_matrices = self.attention(hidden_states, attention_mask, get_attention_matrices=get_attention_matrices)
            # FeedForward层
            intermediate_output = self.intermediate(attention_output)
            # LayerNorm与残差连接输出层
            layer_output = self.output(intermediate_output, attention_output)
            return layer_output, attention_matrices
    
    class BertEncoder(nn.Module):
        # transformer blocks * N
        def __init__(self, config):
            super(BertEncoder, self).__init__()
            layer = BertLayer(config)
            # 复制N个transformer block
            self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
    
        def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True, get_attention_matrices=False):
            """
            :param output_all_encoded_layers: 是否输出每一个transformer block的隐藏层计算结果
            :param get_attention_matrices: 是否输出注意力矩阵, 可用于可视化
            """
            all_attention_matrices = []
            all_encoder_layers = []
            for layer_module in self.layer:
                hidden_states, attention_matrices = layer_module(hidden_states, attention_mask, get_attention_matrices=get_attention_matrices)
                if output_all_encoded_layers:
                    all_encoder_layers.append(hidden_states)
                    all_attention_matrices.append(attention_matrices)
            if not output_all_encoded_layers:
                all_encoder_layers.append(hidden_states)
                all_attention_matrices.append(attention_matrices)
            return all_encoder_layers, all_attention_matrices
    
    
    class BertPooler(nn.Module):
        """Pooler是把隐藏层(hidden state)中对应#CLS#的token的一条提取出来的功能"""
        def __init__(self, config):
            super(BertPooler, self).__init__()
            self.dense = nn.Linear(config.hidden_size, config.hidden_size)
            self.activation = nn.Tanh()
    
        def forward(self, hidden_states):
            # We "pool" the model by simply taking the hidden state corresponding
            # to the first token.
            first_token_tensor = hidden_states[:, 0]
            pooled_output = self.dense(first_token_tensor)
            pooled_output = self.activation(pooled_output)
            return pooled_output
    
    # 线性映射, 激活, LayerNorm
    class BertPredictionHeadTransform(nn.Module):
        def __init__(self, config):
            super(BertPredictionHeadTransform, self).__init__()
            self.dense = nn.Linear(config.hidden_size, config.hidden_size)
            self.transform_act_fn = ACT2FN[config.hidden_act]
            self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
    
        def forward(self, hidden_states):
            hidden_states = self.dense(hidden_states)
            hidden_states = self.transform_act_fn(hidden_states)
            hidden_states = self.LayerNorm(hidden_states)
            return hidden_states
    
    
    class BertLMPredictionHead(nn.Module):
        def __init__(self, config, bert_model_embedding_weights):
            super(BertLMPredictionHead, self).__init__()
            # 线性映射, 激活, LayerNorm
            self.transform = BertPredictionHeadTransform(config)
    
            # The output weights are the same as the input embeddings, but there is
            # an output-only bias for each token.
            self.decoder = nn.Linear(bert_model_embedding_weights.size(1),
                                     bert_model_embedding_weights.size(0),
                                     bias=False)
            """上面是创建一个线性映射层, 把transformer block输出的[batch_size, seq_len, embed_dim]
            映射为[batch_size, seq_len, vocab_size], 也就是把最后一个维度映射成字典中字的数量, 
            获取MaskedLM的预测结果, 注意这里其实也可以直接矩阵成embedding矩阵的转置, 
            但一般情况下我们要随机初始化新的一层参数
            """
            self.decoder.weight = bert_model_embedding_weights
            self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0)))
    
        def forward(self, hidden_states):
            hidden_states = self.transform(hidden_states)
            hidden_states = self.decoder(hidden_states) + self.bias
            return hidden_states
    
    # BERT的训练中通过隐藏层输出Masked LM的预测和Next Sentence的预测
    class BertPreTrainingHeads(nn.Module):
        """
        BERT的训练中通过隐藏层输出Masked LM的预测和Next Sentence的预测
        """
        def __init__(self, config, bert_model_embedding_weights):
            super(BertPreTrainingHeads, self).__init__()
    
            self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
            # 把transformer block输出的[batch_size, seq_len, embed_dim]
            # 映射为[batch_size, seq_len, vocab_size]
            # 用来进行MaskedLM的预测
            self.seq_relationship = nn.Linear(config.hidden_size, 2)
            # 用来把pooled_output也就是对应#CLS#的那一条向量映射为2分类
            # 用来进行Next Sentence的预测
    
        def forward(self, sequence_output, pooled_output):
            prediction_scores = self.predictions(sequence_output)
            seq_relationship_score = self.seq_relationship(pooled_output)
            return prediction_scores, seq_relationship_score
    
    # 用来初始化模型参数
    class BertPreTrainedModel(nn.Module):
        """ An abstract class to handle weights initialization and
            a simple interface for dowloading and loading pretrained models.
            用来初始化模型参数
        """
        def __init__(self, config, *inputs, **kwargs):
            super(BertPreTrainedModel, self).__init__()
            if not isinstance(config, BertConfig):
                raise ValueError(
                    "Parameter config in `{}(config)` should be an instance of class `BertConfig`. "
                    "To create a model from a Google pretrained model use "
                    "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                        self.__class__.__name__, self.__class__.__name__
                    ))
            self.config = config
    
        def init_bert_weights(self, module):
            """ Initialize the weights.
            """
            if isinstance(module, (nn.Linear)):
                # 初始线性映射层的参数为正态分布
                module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            elif isinstance(module, BertLayerNorm):
                # 初始化LayerNorm中的alpha为全1, beta为全0
                module.bias.data.zero_()
                module.weight.data.fill_(1.0)
            if isinstance(module, nn.Linear) and module.bias is not None:
                # 初始化偏置为0
                module.bias.data.zero_()
    
    
    class BertModel(BertPreTrainedModel):
        """BERT model ("Bidirectional Embedding Representations from a Transformer").
        Params:
            config: a BertConfig class instance with the configuration to build a new model
        Inputs:
            `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
                with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
                `extract_features.py`, `run_classifier.py` and `run_squad.py`)
            `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
            `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
            `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
        Outputs: Tuple of (encoded_layers, pooled_output)
            `encoded_layers`: controled by `output_all_encoded_layers` argument:
                - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
                    of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
                    encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
                - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
                    to the last attention block of shape [batch_size, sequence_length, hidden_size],
            `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
                classifier pretrained on top of the hidden state associated to the first character of the
                input (`CLS`) to train on the Next-Sentence task (see BERT's paper).
        Example usage:
        ```python
        # Already been converted into WordPiece token ids
        input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
        input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
        token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
        config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
        model = modeling.BertModel(config=config)
        all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
        ```
        """
        def __init__(self, config):
            super(BertModel, self).__init__(config)
            self.embeddings = BertEmbeddings(config)
            self.encoder = BertEncoder(config)
            self.pooler = BertPooler(config)
            self.apply(self.init_bert_weights)
    
        def forward(self, input_ids, positional_enc, token_type_ids=None, attention_mask=None,
                    output_all_encoded_layers=True, get_attention_matrices=False):
            if attention_mask is None:
                # torch.LongTensor
                # attention_mask = torch.ones_like(input_ids)
                attention_mask = (input_ids > 0)
                # attention_mask [batch_size, length]
            if token_type_ids is None:
                token_type_ids = torch.zeros_like(input_ids)
    
            # We create a 3D attention mask from a 2D tensor mask.
            # Sizes are [batch_size, 1, 1, to_seq_length]
            # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
            # this attention mask is more simple than the triangular masking of causal attention
            # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
            extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
            # 注意力矩阵mask: [batch_size, 1, 1, seq_length]
    
            # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
            # masked positions, this operation will create a tensor which is 0.0 for
            # positions we want to attend and -10000.0 for masked positions.
            # Since we are adding it to the raw scores before the softmax, this is
            # effectively the same as removing these entirely.
            extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
            extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
            # 给注意力矩阵里padding的无效区域加一个很大的负数的偏置, 为了使softmax之后这些无效区域仍然为0, 不参与后续计算
    
            # embedding层
            embedding_output = self.embeddings(input_ids, positional_enc, token_type_ids)
            # 经过所有定义的transformer block之后的输出
            encoded_layers, all_attention_matrices = self.encoder(embedding_output,
                                                                  extended_attention_mask,
                                                                  output_all_encoded_layers=output_all_encoded_layers,
                                                                  get_attention_matrices=get_attention_matrices)
            # 可输出所有层的注意力矩阵用于可视化
            if get_attention_matrices:
                return all_attention_matrices
            # [-1]为最后一个transformer block的隐藏层的计算结果
            sequence_output = encoded_layers[-1]
            # pooled_output为隐藏层中#CLS#对应的token的一条向量
            pooled_output = self.pooler(sequence_output)
            if not output_all_encoded_layers:
                encoded_layers = encoded_layers[-1]
            return encoded_layers, pooled_output
        
    
    class BertForPreTraining(BertPreTrainedModel):
        """BERT model with pre-training heads.
        This module comprises the BERT model followed by the two pre-training heads:
            - the masked language modeling head, and
            - the next sentence classification head.
        Params:
            config: a BertConfig class instance with the configuration to build a new model.
        Inputs:
            `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
                with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
                `extract_features.py`, `run_classifier.py` and `run_squad.py`)
            `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
                a `sentence B` token (see BERT paper for more details).
            `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
            `masked_lm_labels`: optional masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
                with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
                is only computed for the labels set in [0, ..., vocab_size]
            `next_sentence_label`: optional next sentence classification loss: torch.LongTensor of shape [batch_size]
                with indices selected in [0, 1].
                0 => next sentence is the continuation, 1 => next sentence is a random sentence.
        Outputs:
            if `masked_lm_labels` and `next_sentence_label` are not `None`:
                Outputs the total_loss which is the sum of the masked language modeling loss and the next
                sentence classification loss.
            if `masked_lm_labels` or `next_sentence_label` is `None`:
                Outputs a tuple comprising
                - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
                - the next sentence classification logits of shape [batch_size, 2].
        Example usage:
        ```python
        # Already been converted into WordPiece token ids
        input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
        input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
        token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
        config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
        model = BertForPreTraining(config)
        masked_lm_logits_scores, seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
        ```
        """
        def __init__(self, config):
            super(BertForPreTraining, self).__init__(config)
            self.bert = BertModel(config)
            self.cls = BertPreTrainingHeads(config, self.bert.embeddings.word_embeddings.weight)
            self.apply(self.init_bert_weights)
            self.vocab_size = config.vocab_size
            self.next_loss_func = CrossEntropyLoss()
            self.mlm_loss_func = CrossEntropyLoss(ignore_index=0)
    
        def compute_loss(self, predictions, labels, num_class=2, ignore_index=-100):
            loss_func = CrossEntropyLoss(ignore_index=ignore_index)
            return loss_func(predictions.view(-1, num_class), labels.view(-1))
    
        def forward(self, input_ids, positional_enc, token_type_ids=None, attention_mask=None,
                    masked_lm_labels=None, next_sentence_label=None):
            sequence_output, pooled_output = self.bert(input_ids, positional_enc, token_type_ids, attention_mask,
                                                       output_all_encoded_layers=False)
            mlm_preds, next_sen_preds = self.cls(sequence_output, pooled_output)
            return mlm_preds, next_sen_preds
  • 相关阅读:
    jQuery 选择器
    使用JQuery获取对象的几种方式
    多层架构+MVC+EF+AUTOFAC+AUTOMAPPER
    ASP.NET 2.0服务器控件开发的基本概念(转载)
    系统构架设计应考虑的因素
    超级面试题
    架构的点滴
    程序员的职业素养---转载
    imovie的快速入门
    实用的设计模式【二】——类的组织
  • 原文地址:https://www.cnblogs.com/xiximayou/p/13354225.html
Copyright © 2011-2022 走看看