zoukankan      html  css  js  c++  java
  • 目标检测中的组件

    一、数据增强方式

    1. random erase
    2. CutOut
    3. MixUp
    4. CutMix
    5. 色彩、对比度增强
    6. 旋转、裁剪

    解决数据不均衡:

    • Focal loss
    • hard negative example mining
    • OHEM
    • S-OHEM
    • GHM(较大关注easy和正常hard样本,较少关注outliners)
    • PISA

    二、常用backbone

    1. VGG
    2. ResNet(ResNet18,50,100)
    3. ResNeXt
    4. DenseNet
    5. SqueezeNet
    6. Darknet(Darknet19,53)
    7. MobileNet
    8. ShuffleNet
    9. DetNet
    10. DetNAS
    11. SpineNet
    12. EfficientNet(EfficientNet-B0/B7)
    13. CSPResNeXt50
    14. CSPDarknet53

    三、常用Head

    Dense Prediction (one-stage):

    1. RPN
    2. SSD
    3. YOLO
    4. RetinaNet
    5. (anchor based)
    6. CornerNet
    7. CenterNet
    8. MatrixNet
    9. FCOS(anchor free)

    Sparse Prediction (two-stage):

    1. Faster R-CNN
    2. R-FCN
    3. Mask RCNN (anchor based)
    4. RepPoints(anchor free)

    四、常用neck

    Additional blocks:

    1. SPP
    2. ASPP
    3. RFB
    4. SAM

    Path-aggregation blocks:

    1. FPN
    2. PAN
    3. NAS-FPN
    4. Fully-connected FPN
    5. BiFPN
    6. ASFF
    7. SFAM
    8. NAS-FPN

    五、Skip-connections

    1. Residual connections
    2. Weighted residual connections
    3. Multi-input weighted residual connections
    4. Cross stage partial connections (CSP)

    六、常用激活函数和loss

    激活函数:

    • ReLU
    • LReLU
    • PReLU
    • ReLU6
    • Scaled Exponential Linear Unit (SELU)
    • Swish
    • hard-Swish
    • Mish

    loss:

    • MSE
    • Smooth L1
    • Balanced L1
    • KL Loss
    • GHM loss
    • IoU Loss
    • Bounded IoU Loss
    • GIoU Loss
    • CIoU Loss
    • DIoU Loss

    七、正则化和BN方式

    正则化:

    • DropOut
    • DropPath
    • Spatial DropOut
    • DropBlock

    BN:

    • Batch Normalization (BN)
    • Cross-GPU Batch Normalization (CGBN or SyncBN)
    • Filter Response Normalization (FRN)
    • Cross-Iteration Batch Normalization (CBN)

    八、训练技巧

    • Label Smoothing
    • Warm Up

    摘自:https://bbs.cvmart.net/topics/2846?from=timeline

  • 相关阅读:
    解耦和耦合
    python os.remove()方法
    python中split()、os.path.split()函数用法
    P7116-[NOIP2020]微信步数【数学】
    2021牛客OI赛前集训营-方格计数【计数,dp】
    2021牛客OI赛前集训营-树数树【树上启发式合并,堆】
    Ybtoj-排列计数【矩阵乘法,分块幂】
    P7888-「MCOI-06」Distinct Subsequences【dp】
    号爸十一集训 Logs
    数据结构 专项题解
  • 原文地址:https://www.cnblogs.com/xiximayou/p/13378226.html
Copyright © 2011-2022 走看看